2024届云南省保山市昌宁一中数学高一第二学期期末学业质量监测试题含解析_第1页
2024届云南省保山市昌宁一中数学高一第二学期期末学业质量监测试题含解析_第2页
2024届云南省保山市昌宁一中数学高一第二学期期末学业质量监测试题含解析_第3页
2024届云南省保山市昌宁一中数学高一第二学期期末学业质量监测试题含解析_第4页
2024届云南省保山市昌宁一中数学高一第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省保山市昌宁一中数学高一第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是某几何体的三视图,则该几何体的外接球的表面积是()A. B. C. D.2.在中,、、分别是角、、的对边,若,则的形状是()A.等腰三角形 B.钝角三角形 C.直角三角形 D.锐角三角形3.在中,角所对的边分别为,若的面积,则()A. B. C. D.4.已知直线,若,则的值为()A.8 B.2 C. D.-25.已知,则下列结论正确的是()A. B. C. D.不能确定6.经过点,斜率为2的直线在y轴上的截距为()A. B. C.3 D.57.下列说法正确的是()A.小于的角是锐角 B.钝角是第二象限的角C.第二象限的角大于第一象限的角 D.若角与角的终边相同,则8.已知,则的值为A. B. C. D.9.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形10.是边AB上的中点,记,,则向量()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为________12.设ω为正实数.若存在a、b(π≤a<b≤2π),使得13.函数y=tan14.已知是等比数列,且,,那么________________.15.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.16.设数列是等差数列,,,则此数列前20项和等于______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正四面体是侧棱与底面边长都相等的正三棱锥,它的对棱互相垂直.有一个如图所示的正四面体,E,F,G分别是棱AB,BC,CD的中点.(1)求证:面EFG;(2)求异面直线EG与AC所成角的大小.18.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)若,的面积为,求边的长.19.已知数列是以为首项,为公比的等比数列,(1)求数列的通项公式;(2)若,求数列的前项和.20.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.21.已知数列的前项和为,且,求数列的通项公式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由三视图还原几何体,可知该几何体是由边长为的正方体切割得到的四棱锥,可知所求外接球即为正方体的外接球,通过求解正方体外接球半径,代入球的表面积公式可得到结果.【题目详解】由三视图可知,几何体为如下图所示的四棱锥:由上图可知:四棱锥可由边长为的正方体切割得到该正方体的外接球即为四棱锥的外接球四棱锥的外接球半径外接球的表面积故选:【题目点拨】本题考查棱锥外接球表面积的求解问题,关键是能够通过三视图还原几何体,并将几何体放入正方体中,通过求解正方体的外接球表面积得到结果;需明确正方体外接球表面积为其体对角线长的一半.2、A【解题分析】

由正弦定理和,可得,在利用三角恒等变换的公式,化简得,即可求解.【题目详解】在中,由正弦定理,由,可得,又由,则,即,即,解得,所以为等腰三角形,故选A.【题目点拨】本题主要考查了正弦定理的应用,以及三角形形状的判定,其中解答中熟练应用正弦定理的边角互化,合理利用三角恒等变换的公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解题分析】

利用面积公式及可求,再利用同角的三角函数的基本关系式可求,最后利用余弦定理可求的值.【题目详解】因为,故,所以,因为,故,又,由余弦定理可得,故.故选B.【题目点拨】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.4、D【解题分析】

根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.5、C【解题分析】

根据题意,求出与的值,比较易得,变形可得答案.【题目详解】解:根据题意,,,易得,则有,故选:C.【题目点拨】本题主要考查不等式的大小比较,属于基础题.6、B【解题分析】

写出直线的点斜式方程,再将点斜式方程化为斜截式方程即可得解.【题目详解】因为直线经过点,且斜率为2,故点斜式方程为:,化简得:,故直线在y轴上的截距为.故选:B.【题目点拨】本题考查直线的方程,解题关键是应熟知直线的五种方程形式,属于基础题,7、B【解题分析】

可通过举例的方式验证选项的对错.【题目详解】A:负角不是锐角,比如“”的角,故错误;B:钝角范围是“”,是第二象限的角,故正确;C:第二象限角取“”,第一象限角取“”,故错误;D:当角与角的终边相同,则.故选B.【题目点拨】本题考查任意角的概念,难度较易.8、B【解题分析】

利用诱导公式求得tanα,再利用同角三角函数的基本关系求得要求式子的值.【题目详解】∵已知tanα,∴tanα,则,故选B.【题目点拨】本题主要考查应用诱导公式、同角三角函数的基本关系的应用,属于基础题.9、B【解题分析】

利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【题目详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【题目点拨】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.10、C【解题分析】由题意得,∴.选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为所以,即不等式的解集为.12、ω∈[【解题分析】

由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【题目详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【题目点拨】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.13、{【解题分析】

解方程12【题目详解】由题得12x+故答案为{x|x≠2kπ+【题目点拨】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解题分析】

先根据等比数列性质化简方程,再根据平方性质得结果.【题目详解】∵是等比数列,且,,∴,即,则.【题目点拨】本题考查等比数列性质,考查基本求解能力.15、{m|-1<m≤1或m=-}【解题分析】

由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【题目详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【题目点拨】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.16、180【解题分析】

根据条件解得公差与首项,再代入等差数列求和公式得结果【题目详解】因为,,所以,【题目点拨】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】

(1)连接EF,FG,GE,通过三角形的中位线可得,进而可得面EFG;(2)由题可得为异面直线EG与AC所成角,根据正四棱锥的特点得到为等腰直角三角形,进而可得结果.【题目详解】解:(1)连接EF,FG,GE,如图,E,F分别是棱AB,BC的中点,,又面EFG,面EFG,面EFG;(2)由(1),则为异面直线EG与AC所成角,AC与BD是正四面体的对棱,,又,,又,为等腰直角三角形,,即异面直线EG与AC所成角的大小为.【题目点拨】本题考查线面平行的证明,以及异面直线所成的角,通过直线平行找到异面直线所成角的平面角是关键,本题难度不大.18、(1)(2)【解题分析】

(1)利用正弦定理实现边角转化,逆用两角和的正弦公式,进行化简,最后可求出角的大小;(2)利用面积公式结合,可以求出的值,再利用余弦定理可以求出边的长.【题目详解】(1)在中,由正弦定理得,,故,,,代入,并两边同除以,得:,即,因为在中,,所以,故,又由可得,所以,同样由得:.(2)因为的面积为,所以,又由(1)得:,所以,,又,所以,.由余弦定理得:所以.【题目点拨】本题考查了了正弦定理的应用,考查了面积公式,考查了利用余弦定理求边长,考查了数学运算能力.19、(1);(2)【解题分析】

(1)按等比数列的概念直接求解即可;(2)先求出的表达式,再利用裂项相消法即可求得数列的前项和.【题目详解】(1)由等比数列通项公式得:(2)由(1)可得:【题目点拨】本题主要考查数列的通项公式问题及利用裂项相消法求和的问题,属常规考题.20、(1)详见解析;(2)详见解析.【解题分析】

(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【题目详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论