河南省安阳市林州市林州一中2024届数学高一第二学期期末经典试题含解析_第1页
河南省安阳市林州市林州一中2024届数学高一第二学期期末经典试题含解析_第2页
河南省安阳市林州市林州一中2024届数学高一第二学期期末经典试题含解析_第3页
河南省安阳市林州市林州一中2024届数学高一第二学期期末经典试题含解析_第4页
河南省安阳市林州市林州一中2024届数学高一第二学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省安阳市林州市林州一中2024届数学高一第二学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线和互相平行,则它们之间的距离是()A. B. C. D.2.若平面向量a与b的夹角为60°,|b|=4,(aA.2B.4C.6D.123.某同学用收集到的6组数据对(xi,yi)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:x,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③1;其中正确的结论是A.①② B.①③C.②③ D.①②③4.从A,B,C三个同学中选2名代表,则A被选中的概率为()A. B. C. D.5.已知,则的值为()A. B. C. D.26.给出下面四个命题:①;②;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个7.数列的通项公式为,则数列的前100项和().A. B. C. D.8.已知,则下列不等式成立的是()A. B. C. D.9.数列的通项,其前项之和为,则在平面直角坐标系中,直线在轴上的截距为()A.-10 B.-9 C.10 D.910.已知向量,且为正实数,若满足,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,(且),则数列的通项公式为________.12.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).13.关于的不等式,对于恒成立,则实数的取值范围为_______.14.方程组的增广矩阵是________.15.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为__.16.设的内角,,所对的边分别为,,.已知,,如果解此三角形有且只有两个解,则的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱柱的底面是菱形,平面,,,,点为的中点.(1)求证:直线平面;(2)求证:平面;(3)求直线与平面所成的角的正切值.18.在中,角,,的对边分别为,,,已知向量,,且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.19.已知为数列的前项和,且.(1)求数列的通项公式;(2)若,求数列的前项和.20.如图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图(年份代码1-7分别对应年份)(1)建立关于的回归方程(系数精确到0.001);(2)预测2020年我国生活垃圾无害化处理量.附注:参考数据:,,回归方程中斜率和截距的最小二乘估计公式分别为:,.21.已知向量,,函数.(1)若且,求;(2)求函数的最小正周期T及单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由已知中直线和互相平行,求出的值,再根据两条平行线间的距离公式求得它们之间的距离.【题目详解】∵直线和互相平行,则,将直线的方程化为,则两条平行直线之间的距离,===.故选:D.【题目点拨】本题主要考查两条直线平行的性质,两条平行线间的距离公式的应用,属于中档题.2、C【解题分析】∵(a+2b)·(a-3b)=-72,∴3、A【解题分析】由图可知这些点分布在一条斜率大于零的直线附近,所以为正相关,即相关系数因为所以回归直线的方程必过点,即直线恰好过点;因为直线斜率接近于AD斜率,而,所以③错误,综上正确结论是①②,选A.4、D【解题分析】

先求出基本事件总数,被选中包含的基本事件个数,由此能求出被选中的概率.【题目详解】从,,三个同学中选2名代表,基本事件总数为:,共个,被选中包含的基本事件为:,共2个,被选中的概率.故选:D.【题目点拨】本题考查概率的求法,考查列举法和运算求解能力,是基础题.5、B【解题分析】

根据两角和的正切公式,结合,可以求出的值,用同角的三角函数的关系式中的平方和关系把等式变成分子、分母的齐次式形式,最后代入求值即可.【题目详解】..故选:B【题目点拨】本题考查了同角的三角函数关系式的应用,考查了二倍角的正弦公式,考查了两角和的正切公式,考查了数学运算能力.6、B【解题分析】①;②;③;④,所以正确的为①②,选B.7、C【解题分析】

根据通项公式,结合裂项求和法即可求得.【题目详解】数列的通项公式为,则故选:C.【题目点拨】本题考查了裂项求和的应用,属于基础题.8、D【解题分析】

利用排除法,取,,可排除错误选项,再结合函数的单调性,可证明D正确.【题目详解】取,,可排除A,B,C,由函数是上的增函数,又,所以,即选项D正确.故选:D.【题目点拨】本题考查不等式的性质,考查学生的推理论证能力,属于基础题.9、B【解题分析】试题分析:因为数列的通项公式为,所以其前项和为,令,所以直线方程为,令,解得,即直线在轴上的截距为,故选B.考点:数列求和及直线方程.10、A【解题分析】

根据向量的数量积结合基本不等式即可.【题目详解】由题意得,因为,为正实数,则当且仅当时取等.所以选择A【题目点拨】本题主要考查了向量的数量积以及基本不等式,在用基本不等式时要满足一正二定三相等.属于中等题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用累加法和裂项求和得到答案.【题目详解】当时满足故答案为【题目点拨】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.12、45【解题分析】

直接利用对数的运算性质计算即可,【题目详解】.故答案为:45.【题目点拨】本题考查对数的运算性质,考查计算能力,属于基础题.13、或【解题分析】

利用换元法令,则对任意的恒成立,再对分两种情况讨论,令求出函数的最小值,即可得答案.【题目详解】令,则对任意的恒成立,(1)当,即时,上式显然成立;(2)当,即时,令①当时,,显然不成立,故不成立;②当时,,∴解得:综上所述:或.故答案为:或.【题目点拨】本题考查含绝对值函数的最值问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意分段函数的最值求解.14、【解题分析】

理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【题目详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【题目点拨】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.15、【解题分析】试题分析:∵数列满足,且,∴当时,.当时,上式也成立,∴.∴.∴数列的前项的和.∴数列的前项的和为.故答案为.考点:(1)数列递推式;(2)数列求和.16、【解题分析】

由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【题目详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【题目点拨】本题主要考查余弦定理以及韦达定理,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3)【解题分析】

(1)只需证明PO∥BD1,即可得BD1∥平面PAC;(2)只需证明AC⊥BD.DD1⊥AC.即可证明AC⊥平面BDD1B1(3)∠CPO就是直线CP与平面BDD1B1所成的角,在Rt△CPO中,tan∠CPO即可求解【题目详解】(1)设和交于点,连结,由于,分别是,的中点,故,∵平面,平面所以直线平面.(2)在四棱柱中,底面是菱形,则又平面,且平面,则,∵平面,平面,∴平面.(3)由(2)知平面.∴在平面内的射影为∴是与平面所成的角因为,所以为正三角形∴,在中,.∴与平面所成的角的正切值为.【题目点拨】本题考查了线面垂直、线面平行的判定定理、线面角,属于中档题.18、(1);(2)【解题分析】

(1)根据和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函数的图像和性质求解.【题目详解】(1)因为,所以,由正弦定理化角为边可得,即,由余弦定理可得,又,所以.(2)由(1)可得,设的外接圆的半径为,因为,,所以,则,因为为锐角三角形,所以,即,所以,所以,所以,故的取值范围为.【题目点拨】(1)本题主要考查正弦定理余弦定理解三角形,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.19、(1)(2)当时,;当时,;当时,【解题分析】

(1)利用,时单独讨论.求解.

(2)对时单独讨论,当时,对从到的和应用错位相减法求和.【题目详解】当时,,得.当时,即.所以数列是以3为首项,3为公比的等比数列.所以(2)设,则..当时,当时,当时,设………………由﹣得所以所以综上所述:当时,当时,当时,【题目点拨】本题考查应用求通项公式和应用错位相减法求前项和,考查计算能力,属于难题.20、(1)(2)亿吨【解题分析】

(1)由题意计算平均数与回归系数,写出回归方程,即可求得答案;(2)计算2020年对应的值以及的值,即可求得答案.【题目详解】(1)由折线图可得:关于的回归方程:.(2)年对应的值为当时,预测年我国生活垃圾无害化处理量为亿吨.【题目点拨】本题主要考查了求数据的回归直线方程和根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论