高三一轮复习资料递推数列题型归纳解析_第1页
高三一轮复习资料递推数列题型归纳解析_第2页
高三一轮复习资料递推数列题型归纳解析_第3页
高三一轮复习资料递推数列题型归纳解析_第4页
高三一轮复习资料递推数列题型归纳解析_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三一轮复习资料递推数列题型归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。类型1解法:把原递推公式转化为,利用累加法求解。例:已知数列满足,,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,类型2解法:把原递推公式转化为,利用累乘法求解。例:已知数列满足,,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,类型3(其中p,q均为常数,)。例:已知数列中,,,求.解法一(归纳法):解法二(待定系数法):设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.解法四(作商法):令累加得:类型4(其中p,q均为常数,)。(或,其中p,q,r均为常数)。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再同类型3求解。例:已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以类型5解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。解法:这种类型一般是等式两边取对数后转化为,再利用待定系数法求解。例:已知数列{}中,,求数列解:由两边取对数得,令,则,再利用待定系数法解得:。类型9解法:这种类型一般是等式两边取倒数后换元转化为。例:已知数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论