2023年天津市数学九年级第一学期期末调研试题_第1页
2023年天津市数学九年级第一学期期末调研试题_第2页
2023年天津市数学九年级第一学期期末调研试题_第3页
2023年天津市数学九年级第一学期期末调研试题_第4页
2023年天津市数学九年级第一学期期末调研试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年天津市数学九年级第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知是实数,则代数式的最小值等于()A.-2 B.1 C. D.2.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.3.正六边形的半径为4,则该正六边形的边心距是()A.4 B.2 C.2 D.4.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B.C. D.5.下列汽车标志中,既是轴对称图形又是中心对称图形的是A. B. C. D.6.已知点在抛物线上,则下列结论正确的是()A. B. C. D.7.如图,⊙O的半径为1,点O到直线的距离为2,点P是直线上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B. C.2 D.8.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是()A.1 B.2 C.1.5 D.39.下列一元二次方程中有两个不相等的实数根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=010.反比例函数与在同一坐标系的图象可能为()A. B. C. D.11.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(

)A.9分 B.8分 C.7分 D.6分12.某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是()mA. B. C. D.二、填空题(每题4分,共24分)13.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).14.计算:sin30°+tan45°=_____.15.如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EF⊥AM,分别交AB,BD,CD于点E,K,F,设BM=x.(1)AE的长为______(用含x的代数式表示);(2)设EK=2KF,则的值为______.16.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_____.17.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).18.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.三、解答题(共78分)19.(8分)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.(8分)已知9a2-4b2=0,求代数式--的值.21.(8分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.22.(10分)如图,点D,E分别在△ABC的AB,AC边上,且DE∥BC,AG⊥BC于点G,与DE交于点F.已知,BC=10,AF=1.FG=2,求DE的长.23.(10分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是.24.(10分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.25.(12分)如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,,求⊙O半径的长.26.如图,在正方形中,点是的中点,连接,过点作交于点,交于点.(1)证明:;(2)连接,证明:.

参考答案一、选择题(每题4分,共48分)1、C【分析】将代数式配方,然后利用平方的非负性即可求出结论.【详解】解:====∵∴∴代数式的最小值等于故选C.此题考查的是利用配方法求最值,掌握完全平方公式是解决此题的关键.2、A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.本题考查三视图的知识,主视图是从物体的正面看得到的视图.3、C【分析】分析出正多边形的内切圆的半径就是正六边形的边心距,即为每个边长为4的正三角形的高,从而构造直角三角形即可解.【详解】解:半径为4的正六边形可以分成六个边长为4的正三角形,而正多边形的边心距即为每个边长为4的正三角形的高,∴正六多边形的边心距==2.故选C.本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.4、D【解析】设AB=x,根据折叠,可证明∠AFB=90°,由tan∠BCE=,分别表示EB、BC、CE,进而证明△AFB∽△EBC,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.【详解】设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故选D.本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF和△EBC的面积比是解题关键.5、D【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.6、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况7、B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=1.根据题意,在Rt△OPA中,AP==故选:B.此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.8、B【分析】根据相似三角形的性质,由,即可得到AE的长.【详解】解:∵△ABC∽△ADE,∴,∵AB=6,AC=4,AD=3,∴,∴;故选择:B.本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.9、C【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】解:选项A:△=0,方程有两个相等的实数根;选项B、△=0-12=-12<0,方程没有实数根;选项C、△=4-4×1×(-17)=4+68=72>0,方程有两个不相等的实数根;选项D、△=1-4×5=-19<0,方程没有实数根.故选:C.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac;当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.11、C【解析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12、B【分析】设他上升的最大高度是hm,根据坡角及三角函数的定义即可求得结果.【详解】设他上升的最大高度是hm,由题意得,解得故选:B.二、填空题(每题4分,共24分)13、24π【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=×8π×6=24π(cm2).故答案为:24π.本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).14、【详解】解:sin30°+tan45°=此题主要考察学生对特殊角的三角函数值的记忆30°、45°、60°角的各个三角函数值,必须正确、熟练地进行记忆.15、x【分析】(1)根据勾股定理求得AM,进而得出AN,证得△AEN∽△AMB,由相似三角形的性质即可求得AE的长;(2)连接AK、MG、CK,构建全等三角形和直角三角形,证明AK=MK=CK,再根据四边形的内角和定理得∠AKM=90°,利用直角三角形斜边上的中线等于斜边的一半得NK=AM=AN,然后根据相似三角形的性质求得==x,即可得出=x.【详解】(1)解:∵正方形ABCD的边长为1,BM=x,∴AM=,∵点N是AM的中点,∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案为:;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N为AM中点,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四边形ABMK的内角和为360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM为斜边,N为AM的中点,∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案为:x.本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN=

AN是解题的关键.16、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.17、0.1【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.18、【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,∴根据勾股定理可得菱形的边长为:=5cm,∴面积S=×6×8=14cm1.故答案为5;14.本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.三、解答题(共78分)19、(1)y=-x2+x-2;(2)点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).【解析】(1)用待定系数法求出抛物线解析式;(2)以A、P、M为顶点的三角形与△OAC相似,分两种情况讨论计算即可.【详解】解:(1)∵该抛物线过点C(0,-2),∴可设该抛物线的解析式为y=ax2+bx-2.将A(4,0),B(1,0)代入,得,解得,∴此抛物线的解析式为.(2)存在,设P点的横坐标为m,则P点的纵坐标为-m2+m-2,当1<m<4时,AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,∴①当==时,△APM∽△ACO,即4-m=2(-m2+m-2).解得m1=2,m2=4(舍去),∴P(2,1).②当==时,△APM∽△CAO,即2(4-m)=-m2+m-2.解得m1=4,m2=5(均不合题意,舍去),∴当1<m<4时,P(2,1).类似地可求出当m>4时,P(5,-2).当m<1时,P(-3,-14)或P(0,-2),综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.20、±3【分析】原式通分并利用同分母分式的减法法则计算,约分得到最简结果,已知等式利用平方差公式化简,整理得到2b=3a或2b=-3a,代入计算即可求出值.【详解】原式=--====-2·,∵9a2-4b2=0,∴=,∴=±,∴原式=-2×=-3或原式=.点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先根据CG2=GE•GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.试题解析:(1)∵CG2=GE•GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE•CG=EG•CB.考点:相似三角形的判定与性质.22、2【分析】根据DE∥BC得出△ADE∽△ABC,然后利用相似三角形的高之比等于相似比即可求出DE的长度.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AG⊥BC,∴AF⊥DE,∴=,∵BC=10,AF=1,FG=2,∴DE=10×=2.本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.23、(1)作图见解析;(2)关于x轴对称.【分析】(1)依据中心对称的性质,即可得到关于原点的中心对称图形△;(2)依据轴对称的性质,即可得到△,进而根据图形位置得出△与△的位置关系.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,△A2B2C2与△A1B1C1的位置关系是关于x轴对称.故答案为:关于x轴对称.本题主要考查了利用旋转变换以及轴对称变换作图,掌握轴对称性的性质以及中心对称的性质是解决问题的关键.24、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.求出OM,根据CM2=OC2-OM2=CF2-FM2构建方程即可解决问题;【详解】(1)连接AO并延长交⊙O于点E,连接EC.∵AE是直径,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切线,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.∵∠BCD=90°,∴BD是⊙O的直径,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论