2024届浙江省嘉兴市嘉善高级中学高一数学第二学期期末统考模拟试题含解析_第1页
2024届浙江省嘉兴市嘉善高级中学高一数学第二学期期末统考模拟试题含解析_第2页
2024届浙江省嘉兴市嘉善高级中学高一数学第二学期期末统考模拟试题含解析_第3页
2024届浙江省嘉兴市嘉善高级中学高一数学第二学期期末统考模拟试题含解析_第4页
2024届浙江省嘉兴市嘉善高级中学高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省嘉兴市嘉善高级中学高一数学第二学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°2.从一批产品中取出两件产品,事件“至少有一件是次品”的对立事件是A.至多有一件是次品 B.两件都是次品C.只有一件是次品 D.两件都不是次品3.如图,在正方体中,,分别是,中点,则异面直线与所成的角是()A. B. C. D.4.已知a=logA.a<b<c B.a<c<b C.c<a<b D.b<c<a5.石臼是人类以各种石材制造的,用以砸、捣、研磨药材、食品等的生产工具,是由长方体挖去半球所得几何体,若某石臼的三视图如图所示(单位:dm),则其表面积(单位:dm2)为()A.132+8π B.168+4π C.132+12π D.168+16π6.下列四个函数中,与函数完全相同的是()A. B.C. D.7.若直线与平行,则实数的值为()A.或 B. C. D.8.已知角的终边上一点,且,则()A. B. C. D.9.已知两条直线与两个平面,给出下列命题:①若,则;②若,则;③若,则;④若,则;其中正确的命题个数为A.1 B.2 C.3 D.410.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.12.等比数列中,若,,则______.13.若为的最小内角,则函数的值域为_____.14.已知,,,则的最小值为________.15.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.16.已知,,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为单调递增数列,,其前项和为,且满足.(1)求数列的通项公式;(2)若数列,其前项和为,若成立,求的最小值.18.已知,.求和的值.19.己知角的终边经过点.求的值;求的值.20.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.21.记公差不为零的等差数列{an}的前n项和为Sn,已知=2,是与的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【题目详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【题目点拨】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.2、D【解题分析】试题分析:根据对立事件的定义,至少有n个的对立事件是至多有n﹣1个,由事件A:“至少有一件次品”,我们易得结果.解:∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有一件次品”,∴事件A的对立事件为:至多有零件次品,即是两件都不是次品.故答案为D.点评:本题考查的知识点是互斥事件和对立事件,互斥事件关键是要抓住不可能同时发生的要点,对立事件则要抓住有且只有一个发生,可以转化命题的否定,集合的补集来进行求解.3、D【解题分析】

如图,平移直线到,则直线与直线所成角,由于点都是中点,所以,则,而,所以,即,应选答案D.4、B【解题分析】

运用中间量0比较a , c【题目详解】a=log20.2<log21=0,【题目点拨】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.5、B【解题分析】

利用三视图的直观图,画出几何体的直观图,然后求解表面积即可.【题目详解】几何体的直观图如图:几何体的表面积为:6×6×2+4×6×4﹣4π+2π×22=168+4π.故选:B.【点评】本题考查三视图及求解几何体的表面积,判断几何体的形状是解题的关键.6、C【解题分析】

先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【题目详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【题目点拨】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.7、B【解题分析】

利用直线与直线平行的性质求解.【题目详解】∵直线与平行,解得a=2或a=﹣2.∵当a=﹣2时,两直线重合,∴a=2.故选B.【题目点拨】本题考查满足条件的实数值的求法,是基础题,解题时要注意两直线的位置关系的合理运用.8、B【解题分析】

由角的终边上一点得,根据条件解出即可【题目详解】由角的终边上一点得所以解得故选:B【题目点拨】本题考查的是三角函数的定义,较简单.9、A【解题分析】

结合线面平行定理和举例判断.【题目详解】若,则可能平行或异面,故①错误;若,则可能与的交线平行,故②错误;若,则,所以,故③正确;若,则可能平行,相交或异面,故④错误;故选A.【题目点拨】本题线面关系的判断,主要依据线面定理和举例排除.10、C【解题分析】

将平移到一起,根据等边三角形的性质判断出两条异面直线所成角的大小.【题目详解】连接如下图所示,由于分别是棱和棱的中点,故,根据正方体的性质可知,所以是异面直线所成的角,而三角形为等边三角形,故.故选C.【题目点拨】本小题主要考查空间异面直线所成角的大小的求法,考查空间想象能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解题分析】

奇数项和偶数项相减得到和,故,代入公式计算得到答案.【题目详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【题目点拨】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.12、【解题分析】

设的首项为,公比为,根据,列出方程组,求出和即可得解.【题目详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【题目点拨】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.13、【解题分析】

依题意,,利用辅助角公式得,利用正弦函数的单调性即可求得的取值范围,在利用换元法以及同角三角函数基本关系式把所求问题转化结合基本不等式即可求解.【题目详解】∵为的最小内角,故,又,因为,故,∴取值范围是.令,则且∴,令,由双勾函数可知在上为增函数,故,故.故答案为:.【题目点拨】本题考查同角的三角函数的基本关系、辅助角公式以及正弦型函数的值域,注意根据代数式的结构特点换元后将三角函数的问题转化为双勾函数的问题,本题属于中档题.14、1【解题分析】

由题意整体代入可得,由基本不等式可得.【题目详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值1.故答案为:1.【题目点拨】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.15、【解题分析】

将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案.【题目详解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共个,因此,所求的事件的概率为,故答案为.【题目点拨】本题考查古典概型概率的计算,解决这类问题的关键在于确定基本事件的数目,一般利用枚举法和数状图法来列举,遵循不重不漏的基本原则,考查计算能力,属于基础题.16、【解题分析】

根据已知角的范围分别求出,,利用整体代换即可求解.【题目详解】,,,所以,,,,所以,=故答案为:【题目点拨】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)10.【解题分析】

(1)先根据和项与通项关系得项之间递推关系,再根据等差数列定义及其通项公式得数列的通项公式;(2)先根据裂项相消法求,再解不等式得,即得的最小值.【题目详解】(1)由知:,两式相减得:,即,又数列为单调递增数列,,∴,∴,又当时,,即,解得或(舍),符合,∴是以1为首项,以2为公差的等差数列,∴.(2),∴,又∵,即,解得,又,所以的最小值为10.点睛:裂项相消法是指将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.18、,【解题分析】

把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【题目详解】解:,两边同时平方可得:,又,,∴∴,∴【题目点拨】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.19、(1)(2)【解题分析】

(1)直接利用三角函数的定义的应用求出结果.(2)利用同角三角函数关系式的变换和诱导公式的应用求出结果.【题目详解】(1)由题意,由角的终边经过点,根据三角函数的定义,可得.由知,则.【题目点拨】本题主要考查了三角函数关系式的恒等变换,同角三角函数的关系式的变换,诱导公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.20、(1);(2)或.【解题分析】

(1),再解一元二次不等式即可;(2)由题意得,,代入即可求出实数,的值.【题目详解】(1)∵,∴,∴,解得,∴原不等式的解集为;(2)由题意得,,即,解得或,∴或.【题目点拨】本题主要考查一元二次不等式的解法,考查三个二次之间的关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论