




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西柳州铁一中、南宁三中数学高一第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=tan(–2x)的定义域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}2.在正方体中为底面的中心,为的中点,则异面直线与所成角的正弦值为()A. B. C. D.3.已知a>0,b>0,a,b的等比中项为2,则a+1A.3 B.4 C.5 D.424.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.85.为数列的前n项和,若,则的值为()A.-7 B.-4 C.-2 D.06.已知向量a=(1,-1),bA.-1 B.0 C.1 D.27.如果且,那么的大小关系是()A. B.C. D.8.已知直线与圆C相切于点,且圆C的圆心在y轴上,则圆C的标准方程为()A. B.C. D.9.执行如图所示的程序语句,输出的结果为()A. B.C. D.10.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.182二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,角、、所对的边为、、,若的面积为,且,,则的弧度为__________.12.已知,,若与的夹角为钝角,则实数的取值范围为______.13.已知向量,,若,则实数__________.14.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.15.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)16.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图18.如图是函数的部分图象.(1)求函数的表达式;(2)若函数满足方程,求在内的所有实数根之和;(3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.19.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.20.已知圆,过点的直线与圆相交于不同的两点,.(1)若,求直线的方程.(2)判断是否为定值.若是,求出这个定值;若不是,请说明理由.21.在锐角中,角,,所对的边分别为,,,且.(1)求;(2)若的面积为8,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据诱导公式化简解析式,由正切函数的定义域求出此函数的定义域.【题目详解】由题意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函数的定义域是{x|x≠+,k∈Z},故选:A.【题目点拨】本题考查正切函数的定义域,以及诱导公式的应用,属于基础题.2、B【解题分析】
取BC中点为M,连接OM,EM找出异面直线夹角为,在三角形中利用边角关系得到答案.【题目详解】取BC中点为M,连接OM,EM在正方体中为底面的中心,为的中点易知:异面直线与所成角为设正方体边长为2,在中:故答案选B【题目点拨】本题考查了立体几何里异面直线的夹角,通过平行找到对应的角是解题的关键.3、C【解题分析】
由等比中项得:ab=4,目标式子变形为54【题目详解】∵a+1等号成立当且仅当a=b=2,∴原式的最小值为5.【题目点拨】利用基本不等式求最小值时,注意验证等号成立的条件.4、B【解题分析】
由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【题目详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【题目点拨】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.5、A【解题分析】
依次求得的值,进而求得的值.【题目详解】当时,;当时,,;当时,;故.故选:A.【题目点拨】本小题主要考查根据递推关系式求数列每一项,属于基础题.6、C【解题分析】
由向量的坐标运算表示2a【题目详解】解:因为a=(1,-1),b=(-1,2故选C.【题目点拨】本题考查了向量的加法和数量积的坐标运算;属于基础题目.7、B【解题分析】
取,故选B.8、C【解题分析】
先代入点可得,再根据斜率关系列式可得圆心坐标,然后求出半径,写出标准方程.【题目详解】将切点代入切线方程可得:,解得,设圆心为,所以,解得,所以圆的半径,所以圆的标准方程为.故选:.【题目点拨】本题考查了直线与圆的位置关系,属中档题.9、B【解题分析】
通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案.【题目详解】由已知中的程序语句可知:该程序的功能是求的值,输出的结果为,故选B.【题目点拨】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力.10、B【解题分析】
由,可得,可得的值.【题目详解】解:已知等差数列中,可得,即:,,故选B【题目点拨】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用三角形的面积公式求出的值,结合角为锐角,可得出角的弧度数.【题目详解】由三角形的面积公式可知,的面积为,得,为锐角,因此,的弧度数为,故答案为.【题目点拨】本题考查三角形面积公式的应用,考查运算求解能力,属于基础题.12、【解题分析】
由题意得出且与不共线,利用向量的坐标运算可求出实数的取值范围.【题目详解】由于与的夹角为钝角,则且与不共线,,,,解得且,因此,实数的取值范围是,故答案为:.【题目点拨】本题考查利用向量的夹角求参数,解题时要找到其转化条件,设两个非零向量与的夹角为,为锐角,为钝角.13、【解题分析】
根据平面向量时,列方程求出的值.【题目详解】解:向量,,若,则,即,解得.故答案为:.【题目点拨】本题考查了平面向量的坐标运算应用问题,属于基础题.14、【解题分析】
根据弧长公式即可求解.【题目详解】由弧长公式可得故答案为:【题目点拨】本题主要考查了弧长公式的应用,属于基础题.15、12.2【解题分析】
先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【题目详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【题目点拨】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.16、②③④【解题分析】
根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【题目详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【题目点拨】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解题分析】
(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【题目详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【题目点拨】本题考查等可能事件、相互独立事件的概率、频率分布直方图的理解以及利用频率分布直方图求平均数等知识、考查运算能力.18、(1)(2)答案不唯一,具体见解析(3)【解题分析】
(1)根据图像先确定A,再确定,代入一个特殊点再确定.(2)根据(1)的结果结合图像即可解决.(3)根据(1)的结果以及三角函数的变换求出即可解决.【题目详解】解:(Ⅰ)由图可知:,即,又由图可知:是五点作图法中的第三点,,即.(Ⅱ)因为的周期为,在内恰有个周期.⑴当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;⑵当时,方程在内有个实根为,故所有实数根之和为;⑶当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;综上:当时,方程所有实数根之和为;当时,方程所有实数根之和为;(Ⅲ),函数的图象如图所示:则当图象伸长为原来的倍以上时符合题意,所以.【题目点拨】本题主要考查了正弦函数的变换,根据图像确定函数,方程与函数.在解决方程问题时往往转化成两个函数图像交点的问题解决.本题属于中等题.19、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)∵,,∵,∴,即,①又,②由①②联立方程解得,,.∴;(Ⅱ)∵,即,,∴,,又∵,,∴.20、(1)或.(2)是,定值.【解题分析】
(1)根据题意设出,再联立直线方程和圆的方程,得到,,然后由列式,再将的值代入求解,即可求出;(2)先根据特殊情况,当直线与轴垂直时,求出,再说明当直线与轴不垂直时,是否成立,即可判断.【题目详解】(1)由已知得不与轴垂直,不妨设,,.联立消去得,则有,又,,,解得或.所以,直线的方程为或.(2)当直线与轴垂直时(斜率不存在),,的坐标分别为,,此时.当不与轴垂直时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新入职工安全培训考试试题及答案考题
- 25年企业负责人安全培训考试试题含答案(基础题)
- 2025部门级安全培训考试试题下载
- 2025 年工程总承包合同
- 2025建筑设备租赁合同书装载机
- 工程单位和银行合作协议
- 合作投资协议书范本
- 2025标准土地转让协议合同
- 2025年土地承包合同合同法
- 2025建筑工程安全生产文明施工承包合同书
- 美国加征关税从多个角度全方位解读关税课件
- “皖南八校”2024-2025学年高一第二学期期中考试-英语(译林版)及答案
- 一例脂肪液化切口的护理
- 2025届嘉兴市高三语文二模作文解析:智慧不会感到孤独
- GB 15269-2025雪茄烟
- 规模养殖场十项管理制度
- 2025航天知识竞赛考试题库(含答案)
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 【MOOC】机械原理-西北工业大学 中国大学慕课MOOC答案
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 柔性主动防护网分项工程质量检验评定表
评论
0/150
提交评论