




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省淄博市第一中学数学高一下期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等比数列中,,,则()A. B.C. D.2.若且,则下列不等式成立的是()A. B. C. D.3.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.4.在区间内随机取一个实数a,使得关于x的方程有实数根的概率为()A. B. C. D.5.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.6.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.7.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.548.生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜.若,则下列数学模型中最能刻画“糖水变得更甜”的是()A. B.C. D.9.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A. B. C. D.10.设,表示两条直线,,表示两个平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知是边长为4的等边三角形,为平面内一点,则的最小值为__________.12.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.13.已知,则_________.14.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.15.已知指数函数上的最大值与最小值之和为10,则=____________。16.在边长为2的正△ABC所在平面内,以A为圆心,为半径画弧,分别交AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)证明:⊥平面;(2)若,求点到平面的距离.18.已知,,,..(1),求x的值;(2)是否存在实数k,使得?若存在求出k的取值范围;若不存在,请说明理由.19.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.20.在△ABC中,D为BC边上一点,,设,.(1)试、用表示;(2)若,,且与的夹角为60°,求及的值.21.如图,矩形中,平面,,为上的点,且平面,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【题目详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【题目点拨】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.2、D【解题分析】
利用作差法对每一个选项逐一判断分析.【题目详解】选项A,所以a≥b,所以该选项错误;选项B,,符合不能确定,所以该选项错误;选项C,,符合不能确定,所以该选项错误;选项D,,所以,所以该选项正确.故选D【题目点拨】本题主要考查实数大小的比较,意在考查学生对该知识的理解掌握水平和分析推理能力.3、A【解题分析】,向左平移个单位得到函数=,故4、C【解题分析】
由关于x的方程有实数根,求得,再结合长度比的几何概型,即可求解,得到答案.【题目详解】由题意,关于x的方程有实数根,则满足,解得,所以在区间内随机取一个实数a,使得关于x的方程有实数根的概率为.故选:C.【题目点拨】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力,属于基础题.5、D【解题分析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解题分析】
设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【题目详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【题目点拨】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.7、C【解题分析】
利用等差数列的性质和求和公式,即可求得的值,得到答案.【题目详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【题目点拨】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.8、B【解题分析】
由题意可得糖水甜可用浓度体现,设糖的量为,糖水的量设为,添加糖的量为,对照选项,即可得到结论.【题目详解】由题意,若,设糖的量为,糖水的量设为,添加糖的量为,选项A,C不能说明糖水变得更甜,糖水甜可用浓度体现,而,能体现糖水变甜;选项D等价于,不成立,故选:B.【题目点拨】本题主要考查了不等式在实际生活中的运用,考查不等式的等价变形,着重考查了推理与运算能力,属于基础题.9、C【解题分析】
记事件,基本事件是线段的长度,如下图所示,作于,作于,根据三角形的面积关系得,再由三角形的相似性得,可得事件的几何度量为线段的长度,可求得其概率.【题目详解】记事件,基本事件是线段的长度,如下图所示,作于,作于,因为,则有;化简得:,因为,则由三角形的相似性得,所以,事件的几何度量为线段的长度,因为,所以的面积大于的概率.故选:C【题目点拨】本题考查几何概型,属于基础题.常有以下一些方面需考虑几何概型,求解时需注意一些要点.(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用"比例解法求解几何概型的概率.10、D【解题分析】
对选项进行一一判断,选项D为面面垂直判定定理.【题目详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【题目点拨】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.二、填空题:本大题共6小题,每小题5分,共30分。11、-1.【解题分析】分析:可建立坐标系,用平面向量的坐标运算解题.详解:建立如图所示的平面直角坐标系,则,设,∴,易知当时,取得最小值.故答案为-1.点睛:求最值问题,一般要建立一个函数关系式,化几何最值问题为函数的最值,本题通过建立平面直角坐标系,把向量的数量积用点的坐标表示出来后,再用配方法得出最小值,根据表达式的几何意义也能求得最大值.12、371【解题分析】
由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【题目详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【题目点拨】本题考查系统抽样和分层抽样,属于基础题.13、.【解题分析】
在分式中分子分母同时除以,将代数式转化为正切来进行计算.【题目详解】由题意得,原式,故答案为.【题目点拨】本题考查弦的分式齐次式的计算,常利用弦化切的思想求解,一般而言,弦化切思想主要应用于以下两种题型:(1)弦的次分式齐次式:当分式是关于角的次分式齐次式,在分子分母中同时除以,可以将分式化为切的分式来求解;(2)弦的二次整式:当代数式是关于角弦的二次整式时,先除以,将代数式转化为关于角弦的二次分式齐次式,然后在分式分子分母中同时除以,可实现弦化切.14、【解题分析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【题目详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【题目点拨】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.15、【解题分析】
根据和时的单调性可确定最大值和最小值,进而构造方程求得结果.【题目详解】当时,在上单调递增,,解得:或(舍)当时,在上单调递减,,解得:(舍)或(舍)综上所述:故答案为:【题目点拨】本题考查利用函数最值求解参数值的问题,关键是能够根据指数函数得单调性确定最值点.16、【解题分析】
由三角形ABC的边长为2不难求出三角形ABC的面积,又由扇形的半径为,也可以求出扇形的面积,代入几何概型的计算公式即可求出答案.【题目详解】由题意知,在△ABC中,BC边上的高AO正好为,∴圆与边CB相切,如图.S扇形=×××=,S△ABC=×2×2×=,∴P==.【题目点拨】本题考查面积型几何概型概率的求法,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1)通过⊥,⊥来证明;(2)根据等体积法求解.【题目详解】(1)证明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即点到平面的距离为【题目点拨】本题考查线面垂直与点到平面的距离.线面垂直的证明要转化为线线垂直;点到平面的距离常规方法是作出垂线段求解,此题根据等体积法能简化计算.18、(1)或.(2)存在;【解题分析】
(1)由向量平行的坐标运算可求得值;(2)假设存在,由向量的数量积为0求得,再由正弦函数性质及二次函数性质可得所求范围.【题目详解】(1),,又,,即,又,或.(2),,若,则,,,由,,得存在,使得.【题目点拨】本题主要考查向量平行和向量垂直的坐标运算,掌握向量运算的坐标表示是解题基础.19、⑴(2)【解题分析】
⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【题目详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【题目点拨】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等20、(1)(2),【解题分析】
(1)用表示,再用,表示即可;(2)由向量数量积运算及模的运算即可得解.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 介绍考试形式的2025年网络规划设计师试题及答案
- 初级社会工作者考试强化练习试题及答案
- 高考语文模拟试题及答案
- 多媒体应用设计师考试的新方法试题及答案
- 电梯维修证考试题及答案
- 云南数学中考试题及答案
- 多媒体应用设计师考试的多样性试题及答案
- 备考周期2025年网络规划设计师考试试题及答案
- 2025年设计师考试联系试题解析
- 开发前期部门管理制度
- 2024年江苏省常熟市事业单位公开招聘教师岗考试题带答案分析
- 接处警规范化操作培训体系
- 2025年中考语文作文终极押题(附范文5篇)
- 水利水电工程科技创新与试题及答案
- 抗凝药术前停用的指南
- 储能集装箱项目可行性研究报告(模板)
- 数控车工考试试题及答案
- 餐厅食品安全培训知识
- 25黄帝的传说课件
- 2024年因公出国专项工作自查报告
- 2025甘肃省安全员C证考试(专职安全员)题库及答案
评论
0/150
提交评论