福建省仙游金石中学2024届数学高一下期末达标检测试题含解析_第1页
福建省仙游金石中学2024届数学高一下期末达标检测试题含解析_第2页
福建省仙游金石中学2024届数学高一下期末达标检测试题含解析_第3页
福建省仙游金石中学2024届数学高一下期末达标检测试题含解析_第4页
福建省仙游金石中学2024届数学高一下期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省仙游金石中学2024届数学高一下期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法错误的是()A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2B.身高和体重具有相关关系C.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6名D.两个变量间的线性相关性越强,则相关系数的值越大2.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向3.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆4.己知函数的最小值为,最大值为,若,则数列是()A.公差不为0的等差数列 B.公比不为1的等比数列C.常数数列 D.以上都不对5.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.6.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.7.若不等式的解集为,则()A. B.C. D.8.若直线与曲线有公共点,则的取值范围是()A. B.C. D.9.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.610.若,则的大小关系为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.12.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.13.已知数列满足,若对任意都有,则实数的取值范围是_________.14.函数f(x)=sin22x的最小正周期是__________.15.已知函数分别由下表给出:123211123321则当时,_____________.16.若在上是减函数,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平行四边形中,边所在直线的方程为,点.(Ⅰ)求直线的方程;(Ⅱ)求边上的高所在直线的方程.18.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.19.如图长方体中,,分别为棱,的中点(1)求证:平面平面;(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).20.已知三角形的三个顶点,,.(1)求线段的中线所在直线方程;(2)求边上的高所在的直线方程.21.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值以及对应的的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用平均数和方差的定义,根据线性回归的有关知识和分层抽样原理,即可判断出答案.【题目详解】对于A:若样本的平均数为5,标准差为1,则样本的平均数2×5+1=11,标准差为2×1=2,故正确对于B:身高和体重具有相关关系,故正确对于C:高三学生占总人数的比例为:所以抽取20名学生中高三学生有名,故正确对于D:两个变量间的线性相关性越强,应是相关系数的绝对值越大,故错误故选:D【题目点拨】本题考查了线性回归的有关知识,以及平均数和方差、分层抽样原理的应用问题,是基础题.2、A【解题分析】

通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【题目详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【题目点拨】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.3、D【解题分析】原方程即即或故原方程表示两个半圆.4、C【解题分析】

先根据判别式法求出的取值范围,进而求得和的关系,再展开算出分析即可.【题目详解】设,则,因为,故,故二次函数,整理得,故与为方程的两根,所以为常数.故选C.【题目点拨】本题主要考查判别式法求分式函数范围的问题,再根据二次函数的韦达定理进行求解分析即可.5、C【解题分析】

计算结果.【题目详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【题目点拨】本题考查了棱柱的体积公式,属于简单题型.6、B【解题分析】

利用三角函数的平移和伸缩变换的规律求出即可.【题目详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.7、D【解题分析】

根据一元二次不等式的解法,利用韦达定理列方程组,解方程组求得的值.【题目详解】根据一元二次不等式的解法可知,是方程的两个根,根据韦达定理有,解得,故选D.【题目点拨】本小题主要考查一元二次不等式的解集与对应一元二次方程根的关系,考查根与系数关系,考查方程的思想,属于基础题.8、D【解题分析】

将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【题目详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【题目点拨】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题9、D【解题分析】

根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【题目详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【题目点拨】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.10、A【解题分析】

利用作差比较法判断得解.【题目详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【题目点拨】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为12、【解题分析】

将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【题目详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【题目点拨】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.13、【解题分析】

由题若对于任意的都有,可得解出即可得出.【题目详解】∵,若对任意都有,

∴.

∴,

解得.

故答案为.【题目点拨】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.14、.【解题分析】

将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.【题目详解】函数,周期为【题目点拨】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.15、3【解题分析】

根据已知,用换元法,从外层求到里层,即可求解.【题目详解】令.故答案为:.【题目点拨】本题考查函数的表示,考查复合函数值求参数,换元法是解题的关键,属于基础题.16、【解题分析】

化简函数解析式,,时,是余弦函数单调减区间的子集,即可求解.【题目详解】,时,,且在上是减函数,,,因为解得.【题目点拨】本题主要考查了函数的三角恒等变化,余弦函数的单调性,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(Ⅰ)∵是平行四边形直线CD的方程是,即(Ⅱ)∵CE⊥ABCE所在直线方程为,.【解题分析】略18、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解题分析】

(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【题目详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【题目点拨】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.19、(1)见证明;(2);画图见解析【解题分析】

(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.【题目详解】(1)证明:在长方体中,,分别为棱,的中点,所以平面,则,在中,,在中,,所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面(2)如图所示:设,连接,取中点记为,过作,且,则.证明:因为为中点,所以且;又因为,且,所以且,所以四边形为平行四边形,则;又因为,所以,且平面,所以平面;又因为,则,平面,即点为直线与平面的交点;因为,所以,则;且有上述证明可知:四边形为平行四边形,所以,所以,因为,.【题目点拨】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.20、(1)(2).【解题分析】

(1)先求出BC中点的坐标,再求BC的中线所在直线的方程;(2)先求出AB的斜率,再求出边上的高所在的直线方程.【题目详解】(1)由题得BC的中点D的坐标为(2,-1),所以,所以线段的中线AD所在直线方程为即.(2)由题得,所以AB边上的高所在直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论