版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省辽源市2024届数学高一第二学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为().A. B. C.50 D.2.已知点在角的终边上,函数图象上与轴最近的两个对称中心间的距离为,则的值为()A. B. C. D.3.直线xy+1=0的倾斜角是()A.30° B.60°C.120° D.150°4.中,分别是内角的对边,且,,则等于()A. B. C. D.5.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.6.不等式x2+ax+4>0对任意实数x恒成立,则实数a的取值范围为()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.7.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.40 B.36 C.30 D.208.设二次函数在区间上单调递减,且,则实数的取值范围是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]9.在中,角均为锐角,且,则的形状是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形10.在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量满足,则12.把二进制数1111(2)化为十进制数是______.13.圆上的点到直线的距离的最小值是______.14.若的两边长分别为和,其夹角的余弦为,则其外接圆的面积为______________;15.直线与圆的位置关系是______.16.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,,均在圆上.(1)求圆的方程;(2)若直线与圆相交于,两点,求的长;(3)设过点的直线与圆相交于、两点,试问:是否存在直线,使得恰好平分的外接圆?若存在,求出直线的方程;若不存在,请说明理由.18.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到下表数据:单价(元)销量(件)且,,(1)已知与具有线性相关关系,求出关于回归直线方程;(2)解释回归直线方程中的含义并预测当单价为元时其销量为多少?19.已知圆经过点,且圆心在直线:上.(1)求圆的方程;(2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.20.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.21.已知角、的顶点在平面直角坐标系的原点,始边与轴正半轴重合,且角的终边与单位圆(圆心在原点,半径为1的圆)的交点位于第二象限,角的终边和单位圆的交点位于第三象限,若点的横坐标为,点的纵坐标为.(1)求、的值;(2)若,求的值.(结果用反三角函数值表示)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据长方体的外接球性质及球的表面积公式,化简即可得解.【题目详解】根据长方体的外接球直径为体对角线长,则,所以,则由球的表面积公式可得,故选:C.【题目点拨】本题考查了长方体外接球的性质及球表面积公式应用,属于基础题.2、C【解题分析】由题意,则,即,则;又由三角函数的定义可得,则,应选答案C.3、D【解题分析】
首先求出直线的斜率,由倾斜角与斜率的关系即可求解.【题目详解】直线xy+1=0的斜率,设其倾斜角为θ(0°≤θ<180°),则tan,∴θ=150°故选:D【题目点拨】本题考查直线斜率与倾斜角的关系,属于基础题.4、D【解题分析】试题分析:由已知得,解得(舍)或,又因为,所以,由正弦定理得.考点:1、倍角公式;2、正弦定理.5、B【解题分析】
根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【题目详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【题目点拨】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.6、A【解题分析】
根据二次函数的性质求解.【题目详解】不等式x2+ax+4>0对任意实数x恒成立,则,∴.故选A.【题目点拨】本题考查一元二次不等式恒成立问题,解题时可借助二次函数的图象求解.7、C【解题分析】试题分析:利用分层抽样的比例关系,设从乙社区抽取户,则,解得.考点:考查分层抽样.8、D【解题分析】
求出导函数,题意说明在上恒成立(不恒等于0),从而得,得开口方向,及函数单调性,再由函数性质可解.【题目详解】二次函数在区间上单调递减,则,,所以,即函数图象的开口向上,对称轴是直线.所以f(0)=f(2),则当时,有.【题目点拨】实际上对二次函数,当时,函数在递减,在上递增,当时,函数在递增,在上递减.9、C【解题分析】,又角均为锐角,则,,且中,,的形状是钝角三角形,故选C.【方法点睛】本题主要考查利用诱导公式、正弦函数的单调性以及判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.10、A【解题分析】
先根据正弦定理用角A,C表示,再根据三角形内角关系化基本三角函数形状,最后根据正弦函数性质得结果.【题目详解】因为,为的角平分线,所以,在中,,因为,所以,在中,,因为,所以,所以,则,因为,所以,所以,则,即的取值范围为.选A.【题目点拨】本题考查函数正弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.12、.【解题分析】
由二进制数的定义可将化为十进制数.【题目详解】由二进制数的定义可得,故答案为:.【题目点拨】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.13、【解题分析】
求圆心到直线的距离,用距离减去半径即可最小值.【题目详解】圆C的圆心为,半径为,圆心C到直线的距离为:,所以最小值为:故答案为:【题目点拨】本题考查圆上的点到直线的距离的最值,若圆心距为d,圆的半径为r且圆与直线相离,则圆上的点到直线距离的最大值为d+r,最小值为d-r.14、【解题分析】
首先根据余弦定理求第三边,再求其对边的正弦值,最后根据正弦定理求半径和面积.【题目详解】设第三边为,,解得:,设已知两边的夹角为,,那么,根据正弦定理可知,,外接圆的面积.故填:.【题目点拨】本题简单考查了正余弦定理,考查计算能力,属于基础题型.15、相交【解题分析】
由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【题目详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【题目点拨】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.16、【解题分析】
利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【题目详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【题目点拨】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)存在,和.【解题分析】
(1)根据圆心在,的中垂线上,设圆心的坐标为,根据求出的值,从而可得结果;(2)利用点到直线的距离公式以及勾股定理可得结果;(3)首先验证直线的斜率不存在时符合题意,然后斜率存在时,设出直线方程,与圆的方程联立,利用韦达定理,根据列方程求解即可.【题目详解】解:(1)由题意可得:圆心在直线上,设圆心的坐标为,则,解得,即圆心,所以半径,所以圆的方程为;(2)圆心到直线的距离为:,;(3)设,由题意可得:,且的斜率均存在,即,当直线的斜率不存在时,,则,满足,故直线满足题意,当直线的斜率存在时,设直线的方程为,由,消去得,则,由得,即,即,解得:,所以直线的方程为,综上所述,存在满足条件的直线和.【题目点拨】本题考查直线和圆的位置关系,注意对于直线要研究其斜率是否存在,另外利用韦达定理可以达到设而不求的目的,本题是中档题.18、(1);(2)销量为件.【解题分析】
(1)利用最小二乘法的公式求得与的值,即可求出线性回归方程;(2)的含义是单价每增加1元,该产品的销量将减少7件;在(1)中求得的回归方程中,取求得值,即可得到单价为12元时的销量.【题目详解】(1)由题意得:,,,,关于回归直线方程为;(2)的含义是单价每增加元,该产品的销量将减少件;当时,,即当单价为元时预测其销量为件.【题目点拨】本题主要考查线性回归方程的求法—最小二乘法,以及利用线性回归方程进行预测估计。19、(1)(2)在直线上存在定点,使得恒成立,详见解析【解题分析】
(1)求出弦中垂线方程,由中垂线和直线相交得圆心坐标,再求出圆半径,从而得圆标准方程;(2)直线斜率存在时,设方程为,代入圆的方程,得的一元二次方程,同时设交点为由韦达定理得,假设定点存在,设其为,由求得,再验证所作直线斜率不存在时,点也满足题意.【题目详解】(1)的中点为,∴的垂直平分线的斜率为,∴的垂直平分线的方程为,∴的垂直平分线与直线交点为圆心,则,解得,又.∴圆的方程为.(2)当直线的斜率存在时,设直线的斜率为,则过点的直线方程为,故由,整理得,设,设,则,,,即,当斜率不存在时,成立,∴在直线上存在定点,使得恒成立【题目点拨】本题考查求圆的标准方程,考查与圆有关的定点问题.求圆的标准方程可先求出圆心坐标和圆的半径,然后得标准方程,注意圆心一定在弦的中垂线上.定点问题,通常用设而不求思想,即设直线方程与圆方程联立消元后得一元二次方程,设直线与圆的交点坐标为,由韦达定理得,然后设定点坐标如本题,再由条件求出,若不能求出说明定点不存在,如能求出值,注意验证直线斜率不存在时,此定点也满足题意.20、(1)见解析;(2),.【解题分析】
(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.【题目详解】(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 圣昌通脉颗粒行业深度研究报告
- 三鹿多缘乳酸饮料行业深度研究报告
- 生物浓缩料行业深度研究报告
- 双面至多层线路板行业深度研究报告
- 数字矩阵式触摸屏行业深度研究报告
- 2026年中国防水材料化工行业市场前景预测及投资价值评估分析报告
- 2026年市场水表质量调研报告
- 上海联考素描塑造真题及答案
- 位地皮租赁合同范本
- 低空经济产业园综合能源供应方案
- GB/T 17772-2018土方机械保护结构的实验室鉴定挠曲极限量的规定
- GA 836-2009建设工程消防验收评定规则
- FZ/T 13012-2014普梳涤与棉混纺本色布
- 果蔬的采后生理和生物技术专家讲座
- 复杂网络-课件
- 低应变检测教学课件
- 渣土运输服务保障方案
- 公交车安全行车知识课件
- 泛水应急预案演练脚本
- 120型试验台说明书
- 广东珠海高栏港经济开发区
评论
0/150
提交评论