




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西咸阳武功县普集高级中学数学高一第二学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.2.在中,已知三个内角为,,满足,则().A. B.C. D.3.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则()A. B. C. D.4.给出函数为常数,且,,无论a取何值,函数恒过定点P,则P的坐标是A. B. C. D.5.空间直角坐标系中,点关于轴对称的点的坐标是()A. B.C. D.6.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.7.已知数列an满足a1=1,aA.32021-18 B.320208.若三棱锥的四个面都为直角三角形,平面,,,则三棱锥中最长的棱长为()A. B. C. D.9.已知满足:,则目标函数的最大值为()A.6 B.8 C.16 D.410.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.48二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数x,y满足2x+y=2,则xy的最大值为______.12.在锐角中,角、、所对的边为、、,若的面积为,且,,则的弧度为__________.13.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.14.已知不等式的解集为,则________.15.已知数列满足则的最小值为__________.16.已知向量,则与的夹角为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,.(1)若为等边三角形,且是的中点,求.(2)若,,求.18.已知函数f(x)=x2(1)写出函数g(x)的解析式;(2)若直线y=ax+1与曲线y=g(x)有三个不同的交点,求a的取值范围;(3)若直线y=ax+b与曲线y=f(x)在x∈[-2,1]内有交点,求(a-1)219.如图,四边形是边长为2的正方形,为的中点,以为折痕把折起,使点到达点的位置,且.(1)求证:平面平面;(2)求二面角的余弦值.20.在中,边所在的直线方程为,其中顶点的纵坐标为1,顶点的坐标为.(1)求边上的高所在的直线方程;(2)若的中点分别为,,求直线的方程.21.已知函数的最小正周期为.将函数的图象上各点的横坐标变为原来的倍,纵坐标变为原来的倍,得到函数的图象.(1)求的值及函数的解析式;(2)求的单调递增区间及对称中心
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.2、C【解题分析】
利用正弦定理、余弦定理即可得出.【题目详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【题目点拨】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.3、B【解题分析】
先由角的终边过点,求出,再由二倍角公式,即可得出结果.【题目详解】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B【题目点拨】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.4、D【解题分析】试题分析:因为恒过定点,所以函数恒过定点.故选D.考点:指数函数的性质.5、A【解题分析】
关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【题目详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【题目点拨】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.6、B【解题分析】
根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【题目详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【题目点拨】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.7、B【解题分析】
由题意得出3n+1-12<an+2【题目详解】∵an+1-又∵an+2-∵an∈Z,∴于是得到a3上述所有等式全部相加得a2019因此,a2019【题目点拨】本题考查数列项的计算,考查累加法的应用,解题的关键就是根据题中条件构造出等式an+28、B【解题分析】
根据题意,画出满足题意的三棱锥,求解棱长即可.【题目详解】因为平面,故,且,则为直角三角形,由以及勾股定理得:;同理,因为则为直角三角形,由,以及勾股定理得:;在保证和均为直角三角形的情况下,①若,则在中,由勾股定理得:,此时在中,由,及,不满足勾股定理故当时,无法保证为直角三角形.不满足题意.②若,则,又因为面ABC,面ABC,则,故面PAB,又面PAB,故,则此时可以保证也为直角三角形.满足题意.③若,在直角三角形BCA中,斜边AB=2,小于直角边AC=,显然不成立.综上所述:当且仅当时,可以保证四棱锥的四个面均为直角三角形,故作图如下:由已知和勾股定理可得:,显然,最长的棱为.故选:B.【题目点拨】本题表面考查几何体的性质,以及棱长的计算,涉及线面垂直问题,需灵活应用.9、D【解题分析】
作出不等式组对应的平面区域,数形结合,利用z的几何意义,即得。【题目详解】由题得,不等式组对应的平面区域如图,中z表示函数在y轴的截距,由图易得,当函数经过点A时z取到最大值,A点坐标为,因此目标函数的最大值为4.故选:D【题目点拨】本题考查线性规划,是基础题。10、B【解题分析】
由等差数列的性质:若m+n=p+q,则即可得.【题目详解】故选B【题目点拨】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由基本不等式可得,可求出xy的最大值.【题目详解】因为,所以,故,当且仅当时,取等号.故答案为.【题目点拨】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.12、【解题分析】
利用三角形的面积公式求出的值,结合角为锐角,可得出角的弧度数.【题目详解】由三角形的面积公式可知,的面积为,得,为锐角,因此,的弧度数为,故答案为.【题目点拨】本题考查三角形面积公式的应用,考查运算求解能力,属于基础题.13、【解题分析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。14、-7【解题分析】
结合一元二次不等式和一元二次方程的性质,列出方程组,求得的值,即可得到答案.【题目详解】由不等式的解集为,可得,解得,所以.故答案为:.【题目点拨】本题主要考查了一元二次不等式的解法,以及一元二次方程的性质,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】
先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【题目详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【题目点拨】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.16、【解题分析】
设与的夹角为,由条件,平方可得,由此求得的值.【题目详解】设与的夹角为,,则由,平方可得,解得,∴,故答案为.【题目点拨】本题主要考查两个向量的数量积的定义,向量的模的定义,已知三角函数值求角的大小,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)先由题意,结合平面向量基本定理,用表示出,再由向量的数量积运算,即可得出结果;(2)先由向量数量积的运算,求出,再由,结合题中条件,即可得出结果.【题目详解】解:(1)为等边三角形,且,又是中点,又(2)由题意:,,,又【题目点拨】本题主要考查向量数量积的运算,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.18、(1)g(x)=0,-x2【解题分析】
(1)先分类讨论求出|f(x)|的解析式,即得函数g(x)的解析式;(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x⩽-2或x⩾1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1,y=-x2-x+2,-2<x<1,消去y得x2+(a+1)x-1=0.令φ(x)=x2+(a+1)x-1,写出a应满足条件解得;(3)由方程组y=ax+b,y=x2+x-2,消去y得x2+(1-a)x-2-b=0.由题意知方程在[-2,1]内至少有一个实根,设两根为x【题目详解】(1)当f(x)=x2+x-2≥0,得x≥1或x≤-2当f(x)=x2+x-2<0,得∴g(x)=(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x≤-2或x≥1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1y=-x2-x+2,-2<x<1,消去令φ(x)=x2+(a+1)x-1a≠0Δ=解得-1<a<0或0<a<12,所以a(3)由方程组y=ax+by=x2+x-2,消去由题意知方程在[-2,1]内至少有一个实根,设两根为x1不妨设x1∈[-2,1],x2∈R∴(a-1)==≥2×1=2当且仅当x1所以(a-1)2+(b+3)【题目点拨】本题考查了函数与方程,涉及了分段函数、零点、韦达定理等内容,综合性较强,属于难题.19、(1)见解析;(2)【解题分析】
(1)先由线面垂直的判定定理得到平面,进而可得平面平面;(2)先取中点,连结,,证明平面平面,在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.分别求出两平面的法向量,求向量夹角余弦值,即可求出结果.【题目详解】(1)因为四边形是正方形,所以折起后,且,因为,所以是正三角形,所以.又因为正方形中,为的中点,所以,所以,所以,所以,又因为,所以平面.又平面,所以平面平面.(2)取中点,连结,,则,,又,则平面.又平面,所以平面平面.在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.在中,,,.∴,,故,,,∴,.设平面的一个法向量为,则由,得,令,得,,∴.因为平面的法向量为,则,又二面角为锐二面角,∴二面角的余弦值为.【题目点拨】本题主要考查面面垂直的判定,以及二面角的余弦值,熟记面面垂直的判定定理、以及二面角的向量求法即可,属于常考题型.20、(1);(2)【解题分析】
(1)由题易知边上的高过,斜率为3,可得结果.(1)求得点A的坐标可得点E的坐标,易知直线EF和直线AB的斜率一样,可得方程.【题目详解】(1)边上的高过,因为边上的高所在的直线与所在的直线互相垂直,故其斜率为3,方程为:(2)由题点坐标为,的中点是的一条中位线,所以,,其斜率为:,所以的斜率为所以直线的方程为:化简可得:.【题目点拨】本题考查了直线方程的求法,主要考查直线的点斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村集体合同6篇
- 商品鸵鸟饲养回收合同4篇
- 桥梁工程观摩方案(3篇)
- 墙面翻新工程方案(3篇)
- 2025年教师招聘之《幼儿教师招聘》测试卷带答案详解(能力提升)
- 码头防汛改造工程方案(3篇)
- 绿化工程管护方案(3篇)
- 教师招聘之《幼儿教师招聘》模拟卷包及参考答案详解【研优卷】
- 门口河边改造工程方案(3篇)
- 南充工程鉴定服务方案(3篇)
- 2025年广西环保集团第三次公开招聘12人考试参考试题及答案解析
- 输液反应应急预案课件
- 2025年德惠市公开招聘社区工作者(194人)备考练习题库及答案解析
- 三同时培训课件
- 2025国家网络安全宣传周
- 预算评审课件
- 中国特色社会主义民族宗教理论知识竞赛题库及答案
- 2025年8月31日湖南省市直遴选笔试真题及答案解析(B卷)
- 银行双录专区课件
- 单位与个人劳务合同范本
- 毕节法院辅警面试题目及答案
评论
0/150
提交评论