




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东揭阳市惠来县第一中学2024届数学高一第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.12.已知向量,满足,和的夹角为,则()A. B. C. D.13.空间直角坐标系中,点关于轴对称的点的坐标是()A. B.C. D.4.为了得到函数y=sin(x+A.向左平行移动π3B.向右平行移动π3C.向上平行移动π3D.向下平行移动π35.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.6.函数是().A.周期为的偶函数 B.周期为的奇函数C.周期为的偶函数 D.周期为奇函数7.从装有2个红球和2个黑球的口袋内任取2个球,则互斥而不对立的两个事件是()A.恰有1个黑球与恰有2个黑球 B.至少有一个红球与都是黑球C.至少有一个黑球与至少有1个红球 D.至少有一个黑球与都是黑球8.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获9.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π410.若直线始终平分圆的周长,则的最小值为()A. B.5 C.2 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则______.12.在△ABC中,若,则△ABC的形状是____.13.若,则__________.14.若函数的图象过点,则___________.15.在中,,,,则的面积等于______.16.向量满足,,则向量的夹角的余弦值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知海岛在海岛北偏东,,相距海里,物体甲从海岛以海里/小时的速度沿直线向海岛移动,同时物体乙从海岛沿着海岛北偏西方向以海里/小时的速度移动.(1)问经过多长时间,物体甲在物体乙的正东方向;(2)求甲从海岛到达海岛的过程中,甲、乙两物体的最短距离.18.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:19.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.20.已知函数.(1)求的最小正周期;(2)当时,求的值域.21.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质2、B【解题分析】
由平面向量的数量积公式,即可得到本题答案.【题目详解】由题意可得.故选:B.【题目点拨】本题主要考查平面向量的数量积公式,属基础题.3、A【解题分析】
关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【题目详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【题目点拨】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.4、A【解题分析】试题分析:为得到函数y=sin(x+π3)【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数y=f(x)的图象向右平移a个单位长度得y=f(x-a)的图象,而函数y=f(x)的图象向上平移a个单位长度得y=f(x)+a的图象.左、右平移涉及的是x的变化,上、下平移涉及的是函数值f(x)的变化.5、A【解题分析】
由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【题目详解】的最小角为角,则故选:【题目点拨】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.6、B【解题分析】因,故是奇函数,且最小正周期是,即,应选答案B.点睛:解答本题时充分运用题设条件,先借助二倍角的余弦公式的变形,将函数的形式进行化简,然后再验证函数的奇偶性与周期性,从而获得问题的答案.7、A【解题分析】
从装有2个红球和2个黑球的口袋中任取2个球,包括3种情况:①恰有一个黑球,②恰有两个黑球,③没有黑球.
故恰有一个黑球与恰有两个黑球不可能同时发生,它们是互斥事件,再由这两件事的和不是必然事件,故他们是互斥但不对立的事件,
故选:A.8、B【解题分析】
利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【题目详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【题目点拨】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.9、D【解题分析】
由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【题目详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【题目点拨】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.10、B【解题分析】试题分析:把圆的方程化为标准方程得,所以圆心坐标为半径,因为直线始终平分圆的周长,所以直线过圆的圆心,把代入直线得;即,在直线上,是点与点的距离的平方,因为到直线的距离,所以的最小值为,故选B.考点:1、圆的方程及几何性质;2、点到直线的距离公式及最值问题的应用.【方法点晴】本题主要考查圆的方程及几何性质、点到直线的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用几何意义,将的最小值转化为点到直线的距离解答的.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由,然后利用两角差的正切公式可计算出的值.【题目详解】.故答案为:.【题目点拨】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.12、钝角三角形【解题分析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【题目详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【题目点拨】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题13、;【解题分析】
易知的周期为,从而化简求得.【题目详解】的周期为,且,又,.故答案为:【题目点拨】本题考查了正弦型函数的周期以及利用周期求函数值,属于基础题.14、【解题分析】
由过点,求得a,代入,令,即可得到本题答案【题目详解】因为的图象过点,所以,所以,故.故答案为:-5【题目点拨】本题主要考查函数的解析式及利用解析式求值.15、【解题分析】
先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【题目详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【题目点拨】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.16、【解题分析】
通过向量的垂直关系,结合向量的数量积求解向量的夹角的余弦值.【题目详解】向量,满足,,可得:,,向量的夹角为,所以.故答案为.【题目点拨】本题考查向量的数量积的应用,向量的夹角的余弦函数值的求法.考查计算能力.属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)小时;(2)海里.【解题分析】
试题分析:(1)设经过小时,物体甲在物体乙的正东方向,因为小时,所以.则物体甲与海岛的距离为海里,物体乙与海岛距离为海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根据二次函数求的最小值.试题解析:解:(1)设经过小时,物体甲在物体乙的正东方向.如图所示,物体甲与海岛的距离为海里,物体乙与海岛距离为海里,,中,由正弦定理得:,即,则.(2)由(1)题设,,,由余弦定理得:∵,∴当时,海里.考点:1正弦定理;2余弦定理;3二次函数求最值.18、见解析【解题分析】
(1)根据表中所给数据,求出横标的平均数,把求得的数据代入线性回归方程的系数公式,利用最小二乘法得到结果,写出线性回归方程。(2)根据二问求得的线性回归方程,代入所给的的值,预报出销售价格的估计值,这个数字不是一个准确数值。【题目详解】(1)由题意可得,,因此,,所以,-所以;(2)由(1)可得,当时,(万元),即星期日估计活动的利润为10.1万元。【题目点拨】关键点通过参考公式求出,的值,通过线性回归方程求解的是一个估计值。19、(1);(2).【解题分析】
(1)由,转化为,利用弦化切的思想得出的值,从而求出的值;(2)由,转化为,然后利用平面向量数量积的坐标运算律和辅助角公式与函数的解析式进行化简,并求出在区间的最大值,即可得出实数的取值范围.【题目详解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,当时,,取得最大值:,又恒成立,即,故.【题目点拨】本题考查平面向量数量积的坐标运算,考查三角函数的最值,在求解含参函数的不等式恒成立问题,可以利用参变量分离法,转化为函数的最值来求解,考查转化与化归数学思想,考查计算能力,属于中等题.20、(1);(2)【解题分析】
(1)展开两角差的正弦,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出相位的范围,再由正弦函数的有界性求f(x)的值域.【题目详解】(1),;(2),∴,∴,的值域为.【题目点拨】本题考查两角和与差的三角函数,三角函数的周期性,三角函数值域等问题,考查三角函数和差公式、二倍角公式及图像与性质的应用,难度不大,综合性较强,属于简单题.21、(1)(2)的最大值为,此时【解题分析】
(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国家具五金电商项目创业计划书
- 中国三维扫描软件项目创业计划书
- 中国B2C跨境电商项目创业计划书
- 中国近视康复治疗仪项目创业计划书
- 中国光纤标签项目创业计划书
- 中国固网宽带项目创业计划书
- 中国能源信息安全项目创业计划书
- 中国高粱项目创业计划书
- 中国5G小基站项目创业计划书
- 中药制剂的质量控制体系构建-洞察阐释
- 上海市社区工作者管理办法
- GA/T 1133-2014基于视频图像的车辆行驶速度技术鉴定
- 保密宣传商业秘密保密企业培训PPT教学讲座
- Unit1kids-box1教学讲解课件
- T∕CSTM 00839-2022 材料基因工程术语
- 通用桥式起重机施工过程记录表
- 电梯安装施工进度及保证措施
- NLP神经语言学培训课件(PPT 164页)
- 脑卒中康复PPT医学课件
- PCB 企业生产工艺及风险点
- Grace评分表、TIMI评分、CRUSAD评分、wells评分等
评论
0/150
提交评论