2024届福建省龙岩市高级中学高一数学第二学期期末检测模拟试题含解析_第1页
2024届福建省龙岩市高级中学高一数学第二学期期末检测模拟试题含解析_第2页
2024届福建省龙岩市高级中学高一数学第二学期期末检测模拟试题含解析_第3页
2024届福建省龙岩市高级中学高一数学第二学期期末检测模拟试题含解析_第4页
2024届福建省龙岩市高级中学高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省龙岩市高级中学高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.2.在中,角的对边分别为,若,则的最小值是()A.5 B.8 C.7 D.63.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.4.圆与圆恰有三条公切线,则实数的值是()A.4 B.6 C.16 D.365.两数1,25的等差中项为()A.1 B.13 C.5 D.6.已知函数,下列结论错误的是()A.既不是奇函数也不是偶函数 B.在上恰有一个零点C.是周期函数 D.在上是增函数7.如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则与平面所成的角为()A. B. C. D.8.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.9.长方体中,已知,,棱在平面内,则长方体在平面内的射影所构成的图形面积的取值范围是()A. B. C. D.10.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的面积为,圆心角为,则该扇形半径为__________.12.若是三角形的内角,且,则等于_____________.13.设点是角终边上一点,若,则=____.14.关于的不等式的解集是,则______.15.已知,且,则的取值范围是____________.16.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.(1)若,求数列的所有项的和;(2)若,求的最大值;(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.18.给定常数,定义函数,数列满足.(1)若,求及;(2)求证:对任意,;(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.19.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?20.已知数列前项和(),数列等差,且满足,前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求及使不等式对一切都成立的最小正整数的值;(3)设,问是否存在,使得成立?若存在,求出m的值;若不存在,请说明理由.21.已知向量,,.(1)若,求的值;(2)若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.2、D【解题分析】

先化简条件中的等式,利用余弦定理整理得到等式,然后根据等式利用基本不等式求解最小值.【题目详解】由,得,化简整理得,,即,当且仅当,即时,取等号.故选D.【题目点拨】本题考查正、余弦定理在边角化简中的应用,难度一般.对于利用基本不等求最值的时候,一定要注意取到等号的条件.3、B【解题分析】

由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解.【题目详解】在四棱锥中,,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选B.【题目点拨】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解题分析】

两圆外切时,有三条公切线.【题目详解】圆标准方程为,∵两圆有三条公切线,∴两圆外切,∴,.故选C.【题目点拨】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线.5、B【解题分析】

直接利用等差中项的公式求解.【题目详解】由题得两数1,25的等差中项为.故选:B【题目点拨】本题主要考查等差中项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解题分析】

将函数利用同角三角函数的基本关系,化成,再对选项进行一一验证,即可得答案.【题目详解】∵,对A,∵,∴既不是奇函数也不是偶函数,故A命题正确;对B,令,解关于的一元二次方程得:,∵,∴方程存在两个根,∴在上有两个零点,故B错误;对C,显然是函数的一个周期,故C正确;对D,令,则,∵在单调递减,且,又∵在单调递减,∴在上是增函数,故D正确;故选:B【题目点拨】本题考查复合函数的单调性、奇偶性、周期性、零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意复合函数周增异减原则.7、A【解题分析】

取的中点,连接、,作,垂足为点,证明平面,于是得出直线与平面所成的角为,然后利用锐角三角函数可求出.【题目详解】如下图所示,取的中点,连接、,作,垂足为点,是边长为的等边三角形,点为的中点,则,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直线与平面所成的角为,易知,在中,,,,,,即直线与平面所成的角为,故选A.【题目点拨】本题考查直线与平面所成角的计算,求解时遵循“一作、二证、三计算”的原则,一作的是过点作面的垂线,有时也可以通过等体积法计算出点到平面的距离,利用该距离与线段长度的比值作为直线与平面所成角的正弦值,考查计算能力与推理能力,属于中等题.8、B【解题分析】

由平行线间的距离公式求出圆的直径,然后设出圆心,由点到两条切线的距离都等于半径,求出,即可求得圆的方程.【题目详解】因为两条直线与平行,所以它们之间的距离即为圆的直径,所以,所以.设圆心坐标为,则点到两条切线的距离都等于半径,所以,,解得,故圆心为,所以圆的标准方程为.故选:.【题目点拨】本题主要考查求解圆的方程,同时又进一步考查了直线与圆的位置关系,圆的切线性质等.本题也注重考查审题能力,分析问题和解决问题的能力.难度较易.9、A【解题分析】

本题等价于求过BC直线的平面截长方体的面积的取值范围。【题目详解】长方体在平面内的射影所构成的图形面积的取值范围等价于,求过BC直线的平面截长方体的面积的取值范围。由图形知,,故选A.【题目点拨】将问题等价转换为可视的问题。10、D【解题分析】

根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【题目详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【题目点拨】本小题主要考查空间线、面位置关系的判断,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】

将圆心角化为弧度制,再利用扇形面积得到答案.【题目详解】圆心角为扇形的面积为故答案为2【题目点拨】本题考查了扇形的面积公式,属于简单题.12、【解题分析】∵是三角形的内角,且,∴故答案为点睛:本题是一道易错题,在上,,分两种情况:若,则;若,则有两种情况锐角或钝角.13、【解题分析】

根据任意角三角函数的定义,列方程求出m的值.【题目详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【题目点拨】本题考查了任意角三角函数的定义与应用问题,属于基础题.14、【解题分析】

利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【题目详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【题目点拨】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.15、【解题分析】

利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【题目详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【题目点拨】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.16、6【解题分析】

设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【题目详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【题目点拨】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)84;(2)1033;(3)存在,【解题分析】

(1)由题意可得:,即为:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由题意可得,故有;即,即必是2的整数幂,要最大,必需最大,,可得出的最大值;(3)由是公差为的等差数列,是公比为2的等比数列,可得与,可得k与m的方程,一一验算k的值可得答案.【题目详解】解:(1)由已知,故为:2,4,6,8,10,12,14,16;公比为2,则对应的数为2,4,8,16,从而即为:2,4,6,8,10,12,14,16,8,4;此时(2)是首项为2,公差为2的等差数列,故,从而,而首项为2,公比为2的等比数列且,故有;即,即必是2的整数幂又,要最大,必需最大,,故的最大值为,所以,即的最大值为1033(3)由数列是公差为的等差数列知,,而是公比为2的等比数列,则,故,即,又,,则,即,则,即显然,则,所以,将,代入验证知,当时,上式右端为8,等式成立,此时,综上可得:当且仅当时,存在满足等式【题目点拨】本题主要考查等差数列、等比数列的通项公式及等差数列、等比数列前n项的和,属于难题,注意灵活运用各公式解题与运算准确.18、见解析【解题分析】(1)因为,,故,(2)要证明原命题,只需证明对任意都成立,即只需证明若,显然有成立;若,则显然成立综上,恒成立,即对任意的,(3)由(2)知,若为等差数列,则公差,故n无限增大时,总有此时,即故,即,当时,等式成立,且时,,此时为等差数列,满足题意;若,则,此时,也满足题意;综上,满足题意的的取值范围是.【考点定位】考查数列与函数的综合应用,属难题.19、(1)不能获利,政府每月至少补贴元;(2)每月处理量为吨时,平均成本最低.【解题分析】

(1)利用:(生物的柴油总价值)(对应段的月处理成本)利润,根据利润的正负以及大小来判断是否需要补贴,以及补贴多少;(2)考虑:(月处理成本)(月处理量)每吨的平均处理成本,即为,计算的最小值,注意分段.【题目详解】(1)当时,该项目获利为,则∴当时,,因此,该项目不会获利当时,取得最大值,所以政府每月至少需要补贴元才能使该项目不亏损;(2)由题意可知,生活垃圾每吨的平均处理成本为:当时,所以当时,取得最小值;当时,当且仅当,即时,取得最小值因为,所以当每月处理量为吨时,才能使每吨的平均处理成本最低.【题目点拨】本题考查分段函数模型的实际运用,难度一般

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论