云南省禄丰县民族中学2024届数学高一第二学期期末综合测试模拟试题含解析_第1页
云南省禄丰县民族中学2024届数学高一第二学期期末综合测试模拟试题含解析_第2页
云南省禄丰县民族中学2024届数学高一第二学期期末综合测试模拟试题含解析_第3页
云南省禄丰县民族中学2024届数学高一第二学期期末综合测试模拟试题含解析_第4页
云南省禄丰县民族中学2024届数学高一第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省禄丰县民族中学2024届数学高一第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.2.设向量,,若三点共线,则()A. B. C. D.23.某同学5天上学途中所花的时间(单位:分钟)分别为12,8,10,9,11,则这组数据的方差为()A.4 B.2 C.9 D.34.(卷号)2397643038875648(题号)2398229448728576(题文)已知直线、,平面、,给出下列命题:①若,,且,则;②若,,且,则;③若,,且,则;④若,,且,则.其中正确的命题是()A.①② B.③④ C.①④ D.②③5.函数的最小值和最大值分别为()A. B. C. D.6.直线倾斜角的范围是()A.(0,] B.[0,] C.[0,π) D.[0,π]7.若是的重心,,,分别是角的对边,若,则角()A. B. C. D.8.在的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A,B两点,那么这两个切点在球面上的最短距离为()A. B. C. D.9.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.10.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.6二、填空题:本大题共6小题,每小题5分,共30分。11.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.12.若函数图象各点的横坐标缩短为原来的一半,再向左平移个单位,得到的函数图象离原点最近的的对称中心是______.13.函数的最小正周期___________.14.直线在轴上的截距是__________.15.若是等比数列,,,且公比为整数,则______.16.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.18.若不等式恒成立,求实数a的取值范围。19.已知a,b,c分别为ΔABC三个内角A,B,C的对边,且.(1)求角A的大小;(2)若,且ΔABC的面积为,求a的值;(3)若,求的范围.20.在平面直角坐标系中,已知向量,,.(1)若,求的值;(2)若与的夹角为,求的值.21.已知函数,且的解集为.(1)求函数的解析式;(2)解关于的不等式,;(3)设,若对于任意的都有,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【题目详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【题目点拨】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.2、A【解题分析】

利用向量共线的坐标表示可得,解方程即可.【题目详解】三点共线,,又,,,解得.故选:A【题目点拨】本题考查了向量共线的坐标表示,需掌握向量共线,坐标满足:,属于基础题.3、B【解题分析】

先求平均值,再结合方差公式求解即可.【题目详解】解:由题意可得,由方差公式可得:,故选:B.【题目点拨】本题考查了样本数据的方差,属基础题.4、C【解题分析】

逐一判断各命题的正误,可得出结论.【题目详解】对于命题①,若,,且,则,该命题正确;对于命题②,若,,且,则与平行或相交,该命题错误;对于命题③,若,,且,则与平行、垂直或斜交,该命题错误;对于命题④,若,,且,则,该命题正确.故选:C.【题目点拨】本题考查线面、面面位置关系有关命题真假的判断,在判断时,可充分利用线面、面面平行或垂直的判定与性质定理,也可以结合几何体模型进行判断,考查推理能力,属于中等题.5、C【解题分析】2.∴当时,,当时,,故选C.6、C【解题分析】试题分析:根据直线倾斜角的定义判断即可.解:直线倾斜角的范围是:[0,π),故选C.7、D【解题分析】试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量基本定理;2、余弦定理的应用.8、A【解题分析】

根据题意,作出截面图,计算弧长即可.【题目详解】根据题意,作出该球过球心且经过A、B的截面图如下所示:由题可知:则,故满足题意的最短距离为弧长BA,在该弧所在的扇形中,弧长.故选:A.【题目点拨】本题考查弧长的计算公式,二面角的定义,属综合基础题.9、A【解题分析】

先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【题目详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【题目点拨】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.10、D【解题分析】

去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【题目详解】平均数,方差,选D.【题目点拨】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【题目详解】解:在中,由,且,

得,得.

当且仅当时,有最大值1.

过球心,且四面体的体积为1,

∴三棱锥的体积为.

则到平面的距离为.

此时的外接圆的半径为,则球的半径的最小值为,

∴球O的表面积的最小值为.

故答案为:.【题目点拨】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.12、【解题分析】

由二倍角公式化简函数式,然后由三角函数图象变换得新解析式,结合正弦函数性质得对称中心.【题目详解】由题意,经过图象变换后新函数解析式为,由,,,绝对值最小的是,因此所求对称中心为.故答案为:.【题目点拨】本题考查三角函数的图象变换,考查正弦函数的性质,考查二倍角公式,掌握正弦函数性质是解题关键.13、【解题分析】

利用两角和的正弦公式化简函数表达式,由此求得函数的最小正周期.【题目详解】依题意,故函数的周期.故填:.【题目点拨】本小题主要考查两角和的正弦公式,考查三角函数最小正周期的求法,属于基础题.14、【解题分析】

把直线方程化为斜截式,可得它在轴上的截距.【题目详解】解:直线,即,故它在轴上的截距是4,故答案为:.【题目点拨】本题主要考查直线方程的几种形式,属于基础题.15、512【解题分析】

由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【题目详解】是等比数列,

,,

,,

和是方程的两个实数根,

解方程,

得,,

公比q为整数,

,,

,解得,

.故答案为:512【题目点拨】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.16、1.98.【解题分析】

本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【题目详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【题目点拨】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又,从而得到周长的取值范围.试题解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根据题意,得.由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为4.又,所以,所以.所以的周长的取值范围为.18、【解题分析】

恒成立的条件下由于给定了的范围,故可考虑对进行分类,同时利用参变分离法求解的范围.【题目详解】由题意得(1),时,恒成立(2),等价于又∴∴实数a的取值范围是【题目点拨】含有分式的不等式恒成立问题,要注意到分母的正负对于不等号的影响;若是变量的范围给出了,可针对于变量的范围做具体分析,然后去求解参数范围.19、(1)(2)(3)【解题分析】

(1)利用正弦定理化简即得A的大小;(2)先求出bc,b+c的值,再利用余弦定理求出a的值;(3)先求出,再利用三角函数的性质求b+c的范围.【题目详解】(1)由正弦定理得,,即...(2)由可得.∴由余弦定理得:(3)由正弦定理得若,则因为所以所以.所以的范围【题目点拨】本题主要考查正弦定理余弦定理解三角形,考查三角函数最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.20、(1)1(2)【解题分析】

(1).若,则,结合三角函数的关系式即可求的值;

(2).若与的夹角为,利用向量的数量积的坐标公式进行求解即可求的值.【题目详解】(1)由,则即,所以所以(2),又与的夹角为,则即即由,则所以,即【题目点拨】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,属于基础题.21、(1)(2)答案不唯一,具体见解析(3)1【解题分析】

(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论