2024届湖南长沙市第一中学数学高一第二学期期末达标检测试题含解析_第1页
2024届湖南长沙市第一中学数学高一第二学期期末达标检测试题含解析_第2页
2024届湖南长沙市第一中学数学高一第二学期期末达标检测试题含解析_第3页
2024届湖南长沙市第一中学数学高一第二学期期末达标检测试题含解析_第4页
2024届湖南长沙市第一中学数学高一第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南长沙市第一中学数学高一第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.102.向量,若,则的值是()A. B. C. D.3.在等比数列中,,,,则等于()A. B. C. D.4.下列事件是随机事件的是(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在℃时结冰(4)任意掷一枚骰子朝上的点数是偶数A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)5.空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:指数值0~5051~100101~150151~200201~300空气质量优良轻度污染中度污染重度污染严重污染如图是某市10月1日-20日指数变化趋势:下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好6.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形7.直线2x+y+4=0与圆x+22+y+32=5A.255 B.4558.已知某地、、三个村的人口户数及贫困情况分别如图(1)和图(2)所示,为了解该地三个村的贫困原因,当地政府决定采用分层抽样的方法抽取的户数进行调査,则样本容量和抽取村贫困户的户数分别是()A., B.,C., D.,9.已知,其中,则()A. B. C. D.10.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_______________.12.已知等差数列{an}的公差为d,且d≠0,其前n项和为Sn,若满足a1,a2,a5成等比数列,且S3=9,则d=_____,Sn=_____.13.在等比数列中,已知,则=________________.14.在中,,,,则的面积等于______.15.若方程表示圆,则实数的取值范围是______.16.函数的单调增区间是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和.18.如图,是平行四边形,平面,,,,.(1)求证:平面;(2)求直线与平面所成角的正弦值.19.的内角所对边分别为,已知.(1)求;(2)若,,求的面积.20.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.21.设数列的前项和.已知.(1)求数列的通项公式;(2)是否对一切正整数,有?说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

将点的坐标代入直线方程:,再利用乘1法求最值【题目详解】将点的坐标代入直线方程:,,当且仅当时取等号【题目点拨】已知和为定值,求倒数和的最小值,利用乘1法求最值。2、C【解题分析】

由平面向量的坐标运算与共线定理,列方程求出λ的值.【题目详解】向量=(-4,5),=(λ,1),则-=(-4-λ,4),又(-)∥,所以-4-λ-4λ=0,解得λ=-.故选C.【题目点拨】本题考查了平面向量的坐标运算与共线定理应用问题,是基础题.3、C【解题分析】

直接利用等比数列公式计算得到答案.【题目详解】故选:C【题目点拨】本题考查了等比数列的计算,属于简单题.4、D【解题分析】试题分析:根据随机事件的定义:在相同条件下,可能发生也可能不发生的现象(2)是必然发生的,(3)是不可能发生的,所以不是随机事件,故选择D考点:随机事件的定义5、C【解题分析】

根据所给图象,结合中位数的定义、指数与污染程度的关系以及古典概型概率公式,对四个选项逐一判断即可.【题目详解】对,因为第10天与第11天指数值都略高100,所以中位数略高于100,正确;对,中度污染及以上的有第11,13,14,15,17天,共5天占,正确;对,由图知,前半个月中,前4天的空气质量越来越好,后11天该市的空气质量越来越差,错误;对,由图知,10月上旬大部分指数在100以下,10月中旬大部分指数在100以上,所以正确,故选C.【题目点拨】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.6、C【解题分析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;7、C【解题分析】

先求出圆心到直线的距离d,然后根据圆的弦长公式l=2r【题目详解】由题意得,圆x+22+y+32=5圆心-2,-3到直线2x+y+4=0的距离为d=|2×(-2)-3+4|∴MN=2故选C.【题目点拨】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.8、B【解题分析】

将饼图中的、、三个村的人口户数全部相加,再将所得结果乘以得出样本容量,在村人口户数乘以,再乘以可得出村贫困户的抽取的户数.【题目详解】由图得样本容量为,抽取贫困户的户数为户,则抽取村贫困户的户数为户.故选B.【题目点拨】本题考查样本容量的求法,考查分层抽样、扇形统计图和条形统计图计算数据,考查运算求解能力,属于基础题.9、D【解题分析】

先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【题目详解】因为,且,所以,因为,所以,因此,从而,,选D.【题目点拨】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.10、D【解题分析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】.12、2n2.【解题分析】

由已知列关于首项与公差的方程组,求解可得首项与公差,再由等差数列的前项和求解.【题目详解】由题意,有,即,解得,所以.故答案为:,.【题目点拨】本题考查等差数列的通项公式与前项和,考查等比数列的性质,属于基础题.13、【解题分析】14、【解题分析】

先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【题目详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【题目点拨】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.15、.【解题分析】

把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【题目详解】由题意,方程可化为,方程表示圆,则满足,解得.【题目点拨】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.16、,【解题分析】

先利用诱导公式化简,即可由正弦函数的单调性求出。【题目详解】因为,所以的单调增区间是,。【题目点拨】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】试题分析:(1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1)由已知,当时,==,.而,所以数列的通项公式为.(2)由知…①……7分从而……②①②得,即.考点:1.累和法求数列通项公式;2.错位相减法求和18、(1)见解析;(2).【解题分析】

(1)证明平面平面,然后利用平面与平面平行的性质得出平面;(2)作于点,连接,证明出平面,可得出直线与平面所成的角为,并计算出三边边长,并利用锐角三角函数计算出的正弦值,即可得出答案.【题目详解】(1)证明:,平面,平面,平面.同理可证平面.,平面平面.平面,平面;(2)作于点,连接,平面,平面,.又,,平面.则为与平面所成角,在中,,,,,,,,,,因此,直线与平面所成角的正弦值为.【题目点拨】本题考查直线与平面平行的证明,同时也考查了直线与平面所成角的计算,在计算空间角时要遵循“一作、二证、三计算”的原则来求解,考查逻辑推理能力,属于中等题.19、(1);(2)5.【解题分析】

(1)根据正弦定理得,化简即得C的值;(2)先利用余弦定理求出a的值,再求的面积.【题目详解】(1)因为,根据正弦定理得,又,从而,由于,所以.(2)根据余弦定理,而,,,代入整理得,解得或(舍去).故的面积为.【题目点拨】本题主要考查正弦余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)(2)【解题分析】

(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【题目详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【题目点拨】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论