黑龙江省大庆市红岗区大庆十中2024届数学高一第二学期期末达标检测试题含解析_第1页
黑龙江省大庆市红岗区大庆十中2024届数学高一第二学期期末达标检测试题含解析_第2页
黑龙江省大庆市红岗区大庆十中2024届数学高一第二学期期末达标检测试题含解析_第3页
黑龙江省大庆市红岗区大庆十中2024届数学高一第二学期期末达标检测试题含解析_第4页
黑龙江省大庆市红岗区大庆十中2024届数学高一第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省大庆市红岗区大庆十中2024届数学高一第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在平行四边形中,下列结论中错误的是()A. B. C. D.2.函数f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.323.直线被圆截得的弦长为()A.4 B. C. D.4.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.5.半径为,中心角为的弧长为()A. B. C. D.6.已知角以坐标系中为始边,终边与单位圆交于点,则的值为()A. B. C. D.7.在中,角的对边分别是,若,则()A. B.或 C.或 D.8.若集合,,则(

)A. B. C. D.9.已知实数,满足,,且,,成等比数列,则有()A.最大值 B.最大值 C.最小值 D.最小值10.已知两条直线,,两个平面,,下面说法正确的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.执行如图所示的程序框图,则输出的S的值是______.12.执行如图所示的程序框图,则输出的_______.13.数列满足,,,则数列的通项公式______.14.已知数列的前项和是,且,则______.(写出两个即可)15.函数的定义域为_____________.16.在中,角的对边分别为,且面积为,则面积的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长18.如图,在平面直角坐标系xoy中,锐角和钝角的终边分别与单位圆交于A,B两点.(1)若点A的纵坐标是点B的纵坐标是,求的值;(2)若,求的值.19.已知向量垂直于向量,向量垂直于向量.(1)求向量与的夹角;(2)设,且向量满足,求的最小值;(3)在(2)的条件下,随机选取一个向量,求的概率.20.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.21.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据向量的定义及运算法则一一分析选项正误即可.【题目详解】在平行四边形中,显然有,,故A,D正确;根据向量的平行四边形法则,可知,故B正确;根据向量的三角形法,,故C错误;故选:C.【题目点拨】本题考查平面向量的基本定义和运算法则,属于基础题.2、B【解题分析】

由题得g(x构造h(x)=g(x)-f(x)=x2-2x+2∈【题目详解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值为22.故选:B.【题目点拨】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.3、B【解题分析】

先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【题目详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【题目点拨】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.4、B【解题分析】

分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【题目详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【题目点拨】本题主要考查循环结构由输出结果计算判断条件,难度不大.5、D【解题分析】

根据弧长公式,即可求得结果.【题目详解】,.故选D.【题目点拨】本题考查了弧长公式,属于基础题型.6、A【解题分析】

根据题意可知的值,从而可求的值.【题目详解】因为,,则.故选A.【题目点拨】本题考查任意角的三角函数的基本计算,难度较易.若终边与单位圆交于点,则.7、D【解题分析】

直接利用正弦定理,即可得到本题答案,记得要检验,大边对大角.【题目详解】因为,所以,又,所以,.故选:D【题目点拨】本题主要考查利用正弦定理求角.8、B【解题分析】

通过集合B中,用列举法表示出集合B,再利用交集的定义求出.【题目详解】由题意,集合,所以故答案为:B【题目点拨】本题主要考查了集合的表示方法,以及集合的运算,其中熟记集合的表示方法,以及准确利用集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解题分析】试题分析:因为,,成等比数列,所以可得,有最小值,故选C.考点:1、等比数列的性质;2、对数的运算及基本不等式求最值.10、D【解题分析】

满足每个选项的条件时能否找到反例推翻结论即可。【题目详解】A:当m,n中至少有一条垂直交线才满足。B:很明显m,n还可以异面直线不平行。C:只有当m垂直交线时,否则不成立。故选:D【题目点拨】此题考查直线和平面位置关系,一般通过反例排除法即可解决,属于较易题目。二、填空题:本大题共6小题,每小题5分,共30分。11、4【解题分析】

模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【题目详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【题目点拨】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.12、【解题分析】

按照程序框图运行程序,直到a的值满足a>100时,输出结果即可.【题目详解】第一次循环:a=3;第二次循环:a=7;第三次循环:a=15;第四次循环:a=31;第五次循环:a=63;第六次循环:a=127,a>100,所以输出a.所以本题答案为127.【题目点拨】本题考查根据程序框图中的循环结构计算输出结果的问题,属于基础题.13、【解题分析】

由题意得出,利用累加法可求出.【题目详解】数列满足,,,,因此,.故答案为:.【题目点拨】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.14、或【解题分析】

利用已知求的公式,即可算出结果.【题目详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【题目点拨】本题主要考查利用与的关系公式,即,求的方法应用.15、【解题分析】函数的定义域为故答案为16、【解题分析】

利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【题目详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【题目点拨】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)利用正弦定理化简已知可得:,结合两角和的正弦公式及诱导公式可得:,问题得解.(2)利用可得:,两边平方并结合已知及平面向量数量积的定义即可得解.【题目详解】解:(1)因为,所以由正弦定理可得,即,因为,所以,,,故.(2)由已知得,所以,所以.【题目点拨】本题主要考查了正弦定理的应用及两角和的正弦公式,还考查了利用平面向量的数量积解决长度问题,考查转化能力及计算能力,属于中档题.18、(1);(2)【解题分析】

(1)根据三角函数的定义,求出对应的正弦和余弦值,用正弦的和角公式即可求解;(2)根据题意,先计算出的值,再求解.【题目详解】(1)由三角函数的定义得,,.由角、的终边分别在第一和第二象限,得:,,所以;(2),则根据,即可得,解得:..故.【题目点拨】本题考查三角函数的定义,以及由向量的数量积计算模长,属基础题.19、(1);(2);(3).【解题分析】

(1)根据向量的垂直,转化出方程组,求解方程组即可;(2)将向量赋予坐标,求得向量对应点的轨迹方程,将问题转化为圆外一点,到圆上一点的距离的最值问题,即可求解;(3)根据余弦定理,解得,以及的临界状态时,对应的圆心角的大小,利用几何概型的概率计算公式,即可求解.【题目详解】(1)因为故可得,解得①②由①-②可得,解得,将其代入①可得,即将其代入②可得解得,又向量夹角的范围为,故向量与的夹角为.(2)不妨设,由可得.不妨设的起始点为坐标原点,终点为C.因此,点C落在以)为圆心,1为半径的圆上(如图).因为,即由圆的特点可知的最小值为,即:.(3)当时,因为,,满足勾股定理,故容易得.当时,假设此时点落在如图所示的F点处.如图所示.因为,由余弦定理容易得,故.所以,本题化为,在半圆上任取一点C,点C落在弧CF上的概率.由几何概型的概率计算可知:的概率即为圆心角的弧度除以,即.【题目点拨】本题考查向量垂直时数量积的表示,以及利用解析的手段解决向量问题的能力,还有几何概型的概率计算,涉及圆方程的求解,以及余弦定理.本题属于综合题,值得总结.20、(1);(2).【解题分析】

(1)由二倍角公式得,求得则角可求;(2),得,由正弦定理得,再结合余弦定理得则面积可求【题目详解】(1)因为,所以,解得,因为,所以;(2)因为,所以,由正弦定理得所以,由余弦定理,,所以,所以.【题目点拨】本题考查二倍角公式,正余弦定理解三角形,准确计算是关键,是基础题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论