2024届江苏省南京市秦淮区高一数学第二学期期末达标检测模拟试题含解析_第1页
2024届江苏省南京市秦淮区高一数学第二学期期末达标检测模拟试题含解析_第2页
2024届江苏省南京市秦淮区高一数学第二学期期末达标检测模拟试题含解析_第3页
2024届江苏省南京市秦淮区高一数学第二学期期末达标检测模拟试题含解析_第4页
2024届江苏省南京市秦淮区高一数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市秦淮区高一数学第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元/分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元/分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元A.72 B.80 C.84 D.902.已知,向量,则向量()A. B. C. D.3.已知,那么()A. B. C. D.4.圆的半径为()A.1 B.2 C.3 D.45.圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为()A. B. C. D.6.已知等差数列的前项和为,首项,若,则当取最大值时,的值为()A. B. C. D.7.数列是各项均为正数的等比数列,数列是等差数列,且,则()A. B.C. D.8.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.9.数列满足“对任意正整数,都有”的充要条件是()A.是等差数列 B.与都是等差数列C.是等差数列 D.与都是等差数列且公差相等10.在中,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数据的平均数为,则____________.12.函数的零点的个数是______.13.对任意实数,不等式恒成立,则实数的取值范围是____.14.若函数的图象与直线恰有两个不同交点,则的取值范围是________.15.把数列的各项排成如图所示三角形状,记表示第m行、第n个数的位置,则在图中的位置可记为____________.16.已知变量,满足,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数().(1)若在区间上的值域为,求实数的值;(2)在(1)的条件下,记的角所对的边长分别为,若,的面积为,求边长的最小值;(3)当,时,在答题纸上填写下表,用五点法作出的图像,并写出它的单调递增区间.018.已知函数f(x)=sinωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为.(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.19.在中,角A、B、C的对边分别为a、b、c,面积为S,已知(Ⅰ)求证:成等差数列;(Ⅱ)若求.20.已知,,,求:的值.21.已知向量,.求:(1);(2)与的夹角的余弦值;(3)求的值使与为平行向量.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,根据题意得到约束条件,目标函数,平行目标函数图象找到在纵轴上截距最大时所经过的点,把点的坐标代入目标函数中即可.【题目详解】设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,则由题意可得可行解域:,目标函数为可行解域化简得,,在平面直角坐标系内,画出可行解域,如下图所示:作直线,即,平行移动直线,当直线过点时,目标函数取得最大值,联立,解得,所以点坐标为,因此目标函数最大值为,故本题选B.【题目点拨】本题考查了应用线性规划知识解决实际问题的能力,正确列出约束条件,画出可行解域是解题的关键.2、A【解题分析】

由向量减法法则计算.【题目详解】.故选A.【题目点拨】本题考查向量的减法法则,属于基础题.3、A【解题分析】依题意有,故4、A【解题分析】

将圆的一般方程化为标准方程,确定所求.【题目详解】因为圆,所以,所以,故选A.【题目点拨】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.5、D【解题分析】

根据圆锥的体积求出底面圆的半径和高,求出母线长,即可计算圆锥的表面积.【题目详解】圆锥的高和底面半径之比,∴,又圆锥的体积,即,解得;∴,母线长为,则圆锥的表面积为.故选:D.【题目点拨】本题考查圆锥的体积和表面积公式,考查计算能力,属于基础题.6、B【解题分析】

设等差数列的公差为,,由,可得,令求出正整数的最大值,即可得出取得最大值时对应的的值.【题目详解】设等差数列的公差为,由,得,可得,令,,可得,解得.因此,最大.故选:B.【题目点拨】本题考查等差数列前项和的最值,一般利用二次函数的基本性质求解,也可由数列项的符号求出正整数的最大值来求解,考查计算能力,属于中等题.7、B【解题分析】分析:先根据等比数列、等差数列的通项公式表示出、,然后表示出和,然后二者作差比较即可.详解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故选B.点睛:本题主要考查了等比数列的性质.比较两数大小一般采取做差的方法.属于基础题.8、A【解题分析】

逐一分析选项,得到答案.【题目详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【题目点拨】本题考查了函数的基本性质,属于基础题型.9、D【解题分析】

将变形为和,根据等差数列的定义即可得出与都是等差数列且公差相等,反过来,利用等差数列的定义得到,变形即可得出,从而得到“”的充要条件是“与都是等差数列且公差相等”.【题目详解】由得:即数列与均为等差数列且公差相等,故“”是“与都是等差数列且公差相等”的充分条件反之,与都是等差数列且公差相等必有成立变形得:故“与都是等差数列且公差相等”是“”的必要条件综上,“”的充要条件是“与都是等差数列且公差相等”故选:D.【题目点拨】本题主要考查了等差数列的判断,考查了充分必要条件的判断,属于中等题.10、B【解题分析】

根据分析得出点的轨迹为线段,结合图形即可得到的最大值.【题目详解】如图:取,,,点是内(包括边界)的一动点,且,根据平行四边形法则,点的轨迹为线段,则的最大值是,在中,,,,,故选:B【题目点拨】此题考查利用向量方法解决平面几何中的线段长度最值问题,数形结合处理可以避免纯粹的计算,降低难度.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据求平均数的公式,得到关于的方程,求得.【题目详解】由题意得:,解得:,故填:.【题目点拨】本题考查求一组数据的平均数,考查基本数据处理能力.12、【解题分析】

在同一直角坐标系内画出函数与函数的图象,利用数形结合思想可得出结论.【题目详解】在同一直角坐标系内画出函数与函数的图象如下图所示:由图象可知,函数与函数的图象的交点个数为,因此,函数的零点个数为.故答案为:.【题目点拨】本题考查函数零点个数的判断,在判断函数的零点个数时,一般转化为对应方程的根,或转化为两个函数图象的交点个数,考查数形结合思想的应用,属于中等题.13、【解题分析】

分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【题目详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【题目点拨】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.14、【解题分析】

作出函数的图像,根据图像可得答案.【题目详解】因为,所以,所以,所以,作出函数的图像,由图可知故答案为:【题目点拨】本题考查了正弦型函数的图像,考查了数形结合思想,属于基础题.15、【解题分析】

利用第m行共有个数,前m行共有个数,得的位置即可求解【题目详解】因为第m行共有个数,前m行共有个数,所以应该在第11行倒数第二个数,所以的位置为.故答案为:【题目点拨】本题考查等差数列的通项和求和公式,发现每行个数成等差是关键,是基础题16、0【解题分析】

画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【题目详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【题目点拨】本题主要考查了简单的线性规划,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)填表见解析,作图见解析,().【解题分析】

(1)利用二倍角公式和辅助角公式可把化简为,再求出的范围后根据正弦函数的性质可得关于的方程组,解方程组可得它们的值.(2)先求出,再根据面积求出,最后根据余弦定理和基本不等式可求的最小值.(3)根据五点法直接作出图像,再根据正弦函数的性质可得函数的单调增区间.【题目详解】,当时,,则.因为,所以,解得,即.(2)由,得,又的面积为,所以,即,所以,当且仅当时,.(3)由题意得,填表0111作图如下图:由得(),所以函数的单调递增区间是().【题目点拨】本题考查正弦型函数在给定范围上的最值、余弦定理、三角形中的面积公式、正弦型函数的图像与单调性以及基本不等式,本题综合性较高,为中档题.18、(1)f(x)=sin.(2)【解题分析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin2ωx+×-=sin2ωx+cos2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象.所以g(x)=sin.由,得所以所求的单调减区间为19、(Ⅰ)详见解析;(Ⅱ)4.【解题分析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角兴中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(4)在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.试题解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差数列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考点:三角函数与解三角形.20、【解题分析】

求出和的取值范围,利用同角三角函数的基本关系求出和的值,然后利用两角差的余弦公式可求出的值.【题目详解】,则,且,,,,,,,因此,.故答案为:.【题目点拨】本题考查利用两角差的余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论