2024届云南省红河州泸西县第一中学数学高一第二学期期末考试试题含解析_第1页
2024届云南省红河州泸西县第一中学数学高一第二学期期末考试试题含解析_第2页
2024届云南省红河州泸西县第一中学数学高一第二学期期末考试试题含解析_第3页
2024届云南省红河州泸西县第一中学数学高一第二学期期末考试试题含解析_第4页
2024届云南省红河州泸西县第一中学数学高一第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省红河州泸西县第一中学数学高一第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点A(1,0),B(0,1),C(–2,–3),则△ABC的面积为A.3 B.2 C.1 D.2.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶3.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.4.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.5.已知.为等比数列的前项和,若,,则()A.31 B.32 C.63 D.646.已知表示两条不同的直线,表示三个不同的平面,给出下列四个命题:①,,,则;②,,,则;③,,,则;④,,,则其中正确的命题个数是()A.1 B.2 C.3 D.47.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.8.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.49.已知,则下列4个角中与角终边相同的是()A. B. C. D.10.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏二、填空题:本大题共6小题,每小题5分,共30分。11.方程在区间内解的个数是________12.已知等差数列的前项和为,且,,则;13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.15.已知中,,且,则面积的最大值为__________.16.已知数列的通项公式为是数列的前n项和,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱锥中,平面平面,,,分别是棱,上的点(1)为的中点,求证:平面平面.(2)若,平面,求的值.18.如图1所示,在四边形中,,且,,.(1)求的面积;(2)若,求的长.图1图219.在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求内角B的大小;(2)设,,的最大值为5,求k的值.20.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.21.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由两点式求得直线的方程,利用点到直线距离公式求得三角形的高,由两点间距离公式求得的长,从而根据三角形面积公式可得结果.【题目详解】∵点A(1,0),B(0,1),∴直线AB的方程为x+y–1=0,,又∵点C(–2,–3)到直线AB的距离为,∴△ABC的面积为S=.故选A.【题目点拨】本题主要考查两点间的距离公式,点到直线的距离公式、三角形面积公式以及直线方程的应用,意在考查综合运用所学知识解答问题的能力,属于中档题.2、A【解题分析】

利用对立事件、互斥事件的定义直接求解.【题目详解】一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:A.【题目点拨】本题考查互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.3、D【解题分析】

本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【题目详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【题目点拨】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.4、D【解题分析】

运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【题目详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【题目点拨】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.5、C【解题分析】

首先根据题意求出和的值,再计算即可.【题目详解】有题知:,解得,.故选:C【题目点拨】本题主要考查等比数列的性质以及前项和的求法,属于简单题.6、B【解题分析】

根据线面和线线平行与垂直的性质逐个判定即可.【题目详解】对①,,,不一定有,故不一定成立.故①错误.对②,令为底面为直角三角形的直三棱柱的三个侧面,且,,,但此时,故不一定成立.故②错误.对③,,,,则成立.故③正确.对④,若,,则,或,又,则.故④正确.综上,③④正确.故选:B【题目点拨】本题主要考查了根据线面、线线平行与垂直的性质判断命题真假的问题,需要根据题意举出反例或者根据判定定理判定,属于中档题.7、B【解题分析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8、B【解题分析】

过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【题目详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【题目点拨】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.9、C【解题分析】

先写出与角终边相同的角的集合,再给k取值得解.【题目详解】由题得与角终边相同的集合为,当k=6时,.所以与角终边相同的角为.故选C【题目点拨】本题主要考查终边相同的角的求法,意在考查学生对该知识的理解掌握水平.10、B【解题分析】

设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、4.【解题分析】分析:通过二倍角公式化简得到,进而推断或,进而求得结果.详解:,所以或,因为,所以或或或,故解的个数是4.点睛:该题考查的是有关方程解的个数问题,在解题的过程中,涉及到的知识点有正弦的倍角公式,方程的求解问题,注意一定不要两边除以,最后求得结果.12、1【解题分析】

若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.13、【解题分析】2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有(数学1,数学2,语文),(数学1,语文,数学2),(数学2,数学1,语文),(数学2,语文,数学1),(语文,数学1,数学2),(语文,数学2,数学1)共6个,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故2本数学书相邻的概率.14、【解题分析】

根据题意,可令,结合,再进行整体代换即可求解【题目详解】令,则,,,则,,,则函数值域为故答案为:【题目点拨】本题考查3倍角公式的使用,函数的转化思想,属于中档题15、【解题分析】

先利用正弦定理求出c=2,分析得到当点在的垂直平分线上时,边上的高最大,的面积最大,利用余弦定理求出,最后求面积的最大值.【题目详解】由可得,由正弦定理,得,故,当点在的垂直平分线上时,边上的高最大,的面积最大,此时.由余弦定理知,,即,故面积的最大值为.故答案为【题目点拨】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.16、【解题分析】

对数列的通项公式进行整理,再求其前项和,利用对数运算规则,可得到,从而求出,得到答案.【题目详解】所以所以.故答案为:.【题目点拨】本题考查对数运算公式,由数列的通项求前项和,数列的极限,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】

(1)根据等腰三角形的性质,证得,由面面垂直的性质定理,证得平面,进而证得平面平面.(2)根据线面平行的性质定理,证得,平行线分线段成比例,由此求得的值.【题目详解】(1),为的中点,所以.又因为平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【题目点拨】本小题主要考查面面垂直的判定定理和性质定理,考查线面平行的性质定理,考查空间想象能力和逻辑推理能力,属于中档题.18、(1);(2).【解题分析】

(1)利用已知条件求出D角的正弦函数值,然后求△ACD的面积;

(2)利用余弦定理求出AC,通过,利用余弦定理求解AB的长.【题目详解】(1)因为,,所以,又,所以,所以.(2)由余弦定理可得,因为,所以,解得.【题目点拨】本题考查余弦定理以及正弦定理的应用,基本知识的考查,考查学生分析解决问题的能力,属于中档题.19、(1),(2)【解题分析】

解:(1)(3分)又在中,,所以,则………(5分)(2),.………………(8分)又,所以,所以.所以当时,的最大值为.………(10分)………(12分)20、(1);(2).【解题分析】

(1)利用边角互化思想得,由结合两角和的正弦公式可求出的值,于此得出角的大小;(2)由余弦定理可计算出,再利用三角形的面积公式可得出的面积.【题目详解】(1)∵是的内角,∴且,又由正弦定理:得:,化简得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面积为.【题目点拨】本题考查正弦定理边角互化的思想,考查余弦定理以及三角形的面积公式,本题巧妙的地方在于将配凑

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论