




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市重点中学数学高一下期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”2.一个正方体的体积是8,则这个正方体的内切球的表面积是()A.8π B.6π C.4π D.π3.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高4.从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于()A.57 B.59 C.25.数列为等比数列,若,,数列的前项和为,则A. B. C.7 D.316.中,角所对的边分别为,已知向量,,且共线,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形7.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+28.在空间直角坐标系中,点P(3,4,5)关于平面的对称点的坐标为()A.(−3,4,5) B.(−3,−4,5)C.(3,−4,−5) D.(−3,4,−5)9.数列的通项公式,则()A. B. C.或 D.不存在10.下列极限为1的是()A.(个9) B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列中,公差.则与的等差中项是_____(用数字作答)12.点关于直线的对称点的坐标为_____.13.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.14.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.15.若,则______.16.已知,,,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的公比,前项和为,且满足.,,分别是一个等差数列的第1项,第2项,第5项.(1)求数列的通项公式;(2)设,求数列的前项和;(3)若,的前项和为,且对任意的满足,求实数的取值范围.18.已知直线l的方程为.(1)求过点且与直线l垂直的直线方程;(2)求直线与的交点,且求这个点到直线l的距离.19.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.20.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为和,可能的最大亏损率分别为和.投资人计划投资金额不超过亿元,要求确保可能的资金亏损不超过亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?21.在中,角所对的边是,若向量与共线.(1)求角的大小;(2)若,求周长的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【题目详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【题目点拨】本题考查了互斥事件的定义.是基础题.2、C【解题分析】设正方体的棱长为a,则=8,∴a=2.而此正方体的内切球直径为2,∴S表=4π=4π.选C.3、C【解题分析】
根据同比和环比的定义比较两期数据得出结论.【题目详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【题目点拨】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.4、C【解题分析】试题分析:设事件为“从1,2,3,…,9这9个数中5个数的中位数是5”,则基本事件总数为种,事件所包含的基本事件的总数为:,所以由古典概型的计算公式知,,故应选.考点:1.古典概型;5、A【解题分析】
先求等比数列通项公式,再根据等比数列求和公式求结果.【题目详解】数列为等比数列,,,,解得,,数列的前项和为,.故选.【题目点拨】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.6、D【解题分析】
由向量共线的坐标表示得一等式,然后由正弦定理化边为角,利用诱导公式得展开后代入原式化简得,分类讨论得解.【题目详解】∵共线,∴,即,,,整理得,所以或,或或(舍去).∴三角形为直角三角形或等腰三角形.故选:D.【题目点拨】本题考查三角形形状的判断,考查向量共线的坐标表示,考查正弦定理,两角和的正弦公式,考查三角函数性质.解题时不能随便约分漏解.7、D【解题分析】
首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【题目详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【题目点拨】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.8、A【解题分析】
由关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,即可得解.【题目详解】关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,所以点P(3,4,5)关于平面的对称点的坐标为(−3,4,5).故选A.【题目点拨】本题主要考查了空间点的对称点的坐标求法,属于基础题.9、B【解题分析】
因为趋于无穷大,故,分离常数即可得出极限.【题目详解】解:因为的通项公式,要求,即求故选:B【题目点拨】本题考查数列的极限,解答的关键是消去趋于无穷大的式子.10、A【解题分析】
利用极限的运算逐项求解判断即可【题目详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【题目点拨】本题考查的极限的运算及性质,准确计算是关键,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】
根据等差中项的性质,以及的值,求出的值即是所求.【题目详解】根据等差中项的性质可知,的等差中项是,故.【题目点拨】本小题主要考查等差中项的性质,考查等差数列基本量的计算,属于基础题.12、【解题分析】
设关于直线的对称点的坐标为,再根据中点在直线上,且与直线垂直求解即可.【题目详解】设关于直线的对称点的坐标为,则中点为,则在直线上,故①.又与直线垂直有②,联立①②可得.故.故答案为:【题目点拨】本题主要考查了点关于直线对称的点坐标,属于基础题.13、【解题分析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【题目详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【题目点拨】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.14、【解题分析】
求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【题目详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【题目点拨】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.15、【解题分析】
由诱导公式求解即可.【题目详解】因为所以故答案为:【题目点拨】本题主要考查了利用诱导公式化简求值,属于基础题.16、【解题分析】
将所求的式子变形为,展开后可利用基本不等式求得最小值.【题目详解】解:,,,,当且仅当时取等号.故答案为1.【题目点拨】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2);(3)【解题分析】
(1)利用等比数列通项公式以及求和公式化简,得到,由,,分别是一个等差数列的第1项,第2项,第5项,利用等差数列的定义可得,化简即可求出,从而得到数列的通项公式.(2)由(1)可得,利用错位相减,求出数列的前项和即可;(3)结合(1)可得,利用裂项相消法,即可得到的前项和,求出的最大值,即可解得实数的取值范围【题目详解】(1)由得,所以,由,,分别是一个等差数列的第1项,第2项,第5项,得,即,即,即,因为,所以,所以.(2)由于,所以,所以,,两式相减得,,所以(3)由知,∴,∴,解得或.即实数的取值范围是【题目点拨】本题考查等比数列通项公式与前项和,等差数列的定义,以及利用错位相减法和裂项相消法求数列的前项和,考查学生的计算能力,有一定综合性.18、(1)(2)1【解题分析】
(1)与l垂直的直线方程可设为,再将点代入方程可得;(2)先求两直线的交点,再用点到直线的距离公式可得点到直线l的距离.【题目详解】解:(1)设与直线垂直的直线方程为,把代入,得,解得,∴所求直线方程为.(2)解方程组得∴直线与的交点为,点到直线的距离.【题目点拨】本题考查两直线垂直时方程的求法和点到直线的距离公式.19、(Ⅰ)(Ⅱ)【解题分析】
(I)利用正弦定理化简已知条件,由此求得的大小.(II)利用余弦定理求得的值,再根据三角形面积公式求得三角形面积.【题目详解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面积.【题目点拨】本小题主要考查正弦定理和余弦定理解三角形,考查三角形的面积公式,属于基础题.20、投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【解题分析】
设投资人分别用亿元、亿元投资甲、乙两个项目,根据题意列出变量、所满足的约束条件和线性目标函数,利用平移直线的方法得出线性目标函数取得最大值时的最优解,并将最优解代入线性目标函数可得出盈利的最大值,从而解答该问题.【题目详解】设投资人分别用亿元、亿元投资甲、乙两个项目,由题意知,即,目标函数为.上述不等式组表示平面区域如图所示,阴影部分(含边界)即可行域.由图可知,当直线经过点时,该直线在轴上截距最大,此时取得最大值,解方程组,得,所以,点的坐标为.当,时,取得最大值,此时,(亿元).答:投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【题目点拨】本题考查线性规划的实际
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年终大促品牌商家联合促销合同
- 和乡愁有关的课件
- 儿童睡前护理方法
- 高考数学复习:重难点题型之轨迹八类求法(原卷版)
- 二次根式(11考点梳理+11题型解读)原卷版-2024-2025学年人教版八年级数学下学期
- 读后续写万能模版写作句式讲义-高三英语二轮复习
- 爱耳日 保护耳朵51
- 小儿惊厥后护理要点
- 小儿灌肠护理技术规范
- 呼吸评估及护理课件
- 中国2型糖尿病防治指南(2020年版)
- 轮式拖拉机的设计计算书
- 机械手培训图片与课件
- 天津中煤进出口有限公司笔试
- 2024北京通州区三年级(下)期末语文试题及答案
- 看守所业务知识培训课件
- 2025年四川省建筑安全员-B证考试题库及答案
- 传输质量评估体系-全面剖析
- 路灯如何施工方案
- 养老机构九防培训课件
- 杭州市拱墅区部分校教科版六年级下册期末考试科学试卷(解析版)
评论
0/150
提交评论