2024届河北省卓越联盟数学高一第二学期期末监测模拟试题含解析_第1页
2024届河北省卓越联盟数学高一第二学期期末监测模拟试题含解析_第2页
2024届河北省卓越联盟数学高一第二学期期末监测模拟试题含解析_第3页
2024届河北省卓越联盟数学高一第二学期期末监测模拟试题含解析_第4页
2024届河北省卓越联盟数学高一第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省卓越联盟数学高一第二学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正方体中,点是四边形的中心,关于直线,下列说法正确的是()A. B.C.平面 D.平面2.若,则在中,正数的个数是()A.16 B.72 C.86 D.1003.右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:).记甲组数据的众数与中位数分别为,乙组数据的众数与中位数分别为,则()A. B.C. D.4.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.485.为了从甲、乙两组中选一组参加“喜迎国庆共建小康”知识竞赛活动.班主任老师将两组最近的次测试的成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是.则下列说法正确的是()A.,乙组比甲组成绩稳定,应选乙组参加比赛B.,甲组比乙组成绩稳定.应选甲组参加比赛C.,甲组比乙组成绩稳定.应选甲组参加比赛D.,乙组比甲组成绩稳定,应选乙组参加比赛6.得到函数的图象,只需将的图象()A.向左移动 B.向右移动 C.向左移动 D.向右移动7.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy8.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面9.直线的倾斜角为()A. B. C. D.10.平面向量与共线且方向相同,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量与向量共线,则实数等于__________.12.已知斜率为的直线的倾斜角为,则________.13.如果事件A与事件B互斥,且,,则=.14.已知点,,若直线与线段有公共点,则实数的取值范围是____________.15.如图,正方形中,分别为边上点,且,,则________.16.和2的等差中项的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求证:;(2)若角满足,求锐角的取值范围.18.如图是某设计师设计的型饰品的平面图,其中支架,,两两成,,,且.现设计师在支架上装点普通珠宝,普通珠宝的价值为,且与长成正比,比例系数为(为正常数);在区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为,且与的面积成正比,比例系数为.设,.(1)求关于的函数解析式,并写出的取值范围;(2)求的最大值及相应的的值.19.已知数列的前项和为,,.(1)求数列的通项公式;(2)在数列中,,其前项和为,求的取值范围.20.已知函数.(1)求的单调递增区间;(2)求在区间上的值域.21.设两个非零向量与不共线,(1)若,,,求证:三点共线;(2)试确定实数,使和同向.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

设,证明出,可判断出选项A、C的正误;由为等腰三角形结合可判断出B选项的正误;证明平面可判断出D选项的正误.【题目详解】如下图所示,设,则为的中点,在正方体中,,则四边形为平行四边形,.易知点、分别为、的中点,,则四边形为平行四边形,则,由于过直线外一点有且只有一条直线与已知直线平行,则A选项中的命题错误;,平面,平面,平面,C选项中的命题正确;易知,则为等腰三角形,且为底,所以,与不垂直,由于,则与不垂直,B选项中的命题错误;四边形为正方形,则,在正方体中,平面,平面,,,平面,平面,,同理可证,且,平面,则与平面不垂直,D选项中的命题错误.故选C.【题目点拨】本题考查线线、线面关系的判断,解题时应充分利用线面平行与垂直等判定定理证明线面平行、线面垂直,考查推理能力,属于中等题.2、C【解题分析】

令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.3、D【解题分析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.4、B【解题分析】

根据分层抽样各层在总体的比例与在样本的比例相同求解.【题目详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【题目点拨】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.5、D【解题分析】

由茎叶图数据分别计算两组的平均数;根据数据分布特点可知乙组成绩更稳定;由平均数和稳定性可知应选乙组参赛.【题目详解】;乙组的数据集中在平均数附近乙组成绩更稳定应选乙组参加比赛本题正确选项:【题目点拨】本题考查茎叶图的相关知识,涉及到平均数的计算、数据稳定性的估计等知识,属于基础题.6、B【解题分析】

直接利用三角函数图象的平移变换法则,对选项中的变换逐一判断即可.【题目详解】函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,对.函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,错,故选B.【题目点拨】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.7、D【解题分析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.8、D【解题分析】

利用定理及特例法逐一判断即可。【题目详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【题目点拨】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。9、C【解题分析】

求出直线的斜率,然后求解直线的倾斜角.【题目详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【题目点拨】本题考查直线的斜率与倾斜角的求法,属于基础题.10、C【解题分析】

利用向量共线的坐标运算求解,验证得答案.【题目详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选.【题目点拨】本题考查向量共线的坐标运算,是基础的计算题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】

利用向量共线的坐标公式,列式求解.【题目详解】因为向量与向量共线,所以,故答案为:3.【题目点拨】本题考查向量共线的坐标公式,属于基础题.12、【解题分析】

由直线的斜率公式可得=,分析可得,由同角三角函数的基本关系式计算可得答案.【题目详解】根据题意,直线的倾斜角为,其斜率为,则有=,则,必有,即,平方有:,得,故,解得或(舍).故答案为﹣【题目点拨】本题考查直线的倾斜角,涉及同角三角函数的基本关系式,属于基础题.13、0.5【解题分析】

表示事件A与事件B满足其中之一占整体的占比.所以根据互斥事件概率公式求解.【题目详解】【题目点拨】此题考查互斥事件概率公式,关键点在于理解清楚题目概率表示的实际含义,属于简单题目.14、【解题分析】

根据直线方程可确定直线过定点;求出有公共点的临界状态时的斜率,即和;根据位置关系可确定的范围.【题目详解】直线可整理为:直线经过定点,又直线的斜率为的取值范围为:本题正确结果:【题目点拨】本题考查根据直线与线段的交点个数求解参数范围的问题,关键是能够明确直线经过的定点,从而确定临界状态时的斜率.15、(或)【解题分析】

先设,根据题意得到,再由两角和的正切公式求出,得到,进而可得出结果.【题目详解】设,则所以,所以,因此.故答案为【题目点拨】本题主要考查三角恒等变换的应用,熟记公式即可,属于常考题型.16、【解题分析】

根据等差中项性质求解即可【题目详解】设等差中项为,则,解得故答案为:【题目点拨】本题考查等差中项的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)根据函数的解析式化简计算可得出;(2)由(1)得,由,可得,并推导出函数为上的增函数,可得出,由为锐角可得出,由此可得出锐角的取值范围.【题目详解】(1),;(2)任取、,且,,,,,所以,函数是上的增函数,由(1)知:即,由,得,又,即有,故有,即,为锐角,则,,的取值范围是.【题目点拨】本题考查利用解析式化简计算,同时也考查了利用函数的单调性解不等式,涉及三角不等式的求解,考查计算能力,属于中等题.18、(1)();(2),的最大值是.【解题分析】试题分析:(1)运用题设和实际建立函数关系并确定定义域;(2)运用基本不等式求函数的最值和取得最值的条件.试题解析:(1)因为,,,由余弦定理,,解得,由,得.又,得,解得,所以的取值范围是.(2),,则,设,则.当且仅当即取等号,此时取等号,所以当时,的最大值是.考点:阅读理解能力和数学建模能力、基本不等式及在解决实际问题中的灵活运用.【易错点晴】应用题是江苏高考每年必考的重要题型之一,也是历届高考失分较多的题型.解答这类问题的关键是提高考生的阅读理解能力和数学建模能力,以及抽象概括能力.解答好这类问题要过:“审题、理解题意、建立数学模型、求解数学模型、作答”这五个重要环节,其中审题关要求反复阅读问题中提供的一些信息,并将其与学过的数学模型进行联系,为建构数学模型打下基础,最后的作答也是必不可少的重要环节之一,应用题的解答最后一定要依据题设中提供的问题做出合理的回答,这也是失分较多一个环节.19、(1).(2)【解题分析】

(1)根据已知的等式,再写一个关于等式,利用求通项公式;(2)利用裂项相消法求解,再根据单调性以及求解的取值范围.【题目详解】解:(1)当时,,,两式相减得整理得,即,又,,,则,当时,,所以.(2),则,.又,所以数列单调递增,当时,最小值为,又因为,所以的取值范围为.【题目点拨】当,且是等差数列且,则的前项和可用裂项相消法求解:.20、(1);(2)【解题分析】

(1)利用两角差的余弦和诱导公式化简f(x),再求单调区间即可;(2)由结合三角函数性质求值域即可【题目详解】(1)令,得,的单调递增区间为;(2)由得,故而.【题目点拨】本题考查三角恒等变换,三角函数单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论