




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古翁牛特旗乌丹二中2024届数学高一下期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.2.在等比数列中,,,则等于()A.256 B.-256 C.128 D.-1283.设△的内角所对的边为,,,,则()A. B.或 C. D.或4.下列函数中,在区间上为增函数的是().A. B. C. D.5.()A. B. C. D.6.圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为()A. B. C. D.7.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°8.下列函数中,最小值为2的函数是()A. B.C. D.9.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则()A.B.C.D.10.若平面平面,直线,直线,则关于直线、的位置关系的说法正确的是()A. B.、异面 C. D.、没有公共点二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.12.与30°角终边相同的角_____________.13.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.14.执行如图所示的程序框图,则输出的S的值是______.15.计算:__________.16.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为,中边所对的角为,经测量已知,.(1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记与的面积分别为和,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.18.已知,是第四象限角,求和的值.19.△ABC的内角A,B,C所对边分别为,已知△ABC面积为.(1)求角C;(2)若D为AB中点,且c=2,求CD的最大值.20.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.21.已知为等差数列,前项和为,是首项为的等比数列,且公比大于,,,.(1)求和的通项公式;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【题目详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【题目点拨】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.2、A【解题分析】
先设等比数列的公比为,根据题中条件求出,进而可求出结果.【题目详解】设等比数列的公比为,因为,,所以,因此.故选A【题目点拨】本题主要考查等比数列的基本量的计算,熟记通项公式即可,属于基础题型.3、B【解题分析】试题分析:因为,,,由正弦定理,因为是三角形的内角,且,所以,故选B.考点:正弦定理4、B【解题分析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.5、A【解题分析】
将根据诱导公式化为后,利用两角和的正弦公式可得.【题目详解】.故选:A【题目点拨】本题考查了诱导公式,考查了两角和的正弦公式,属于基础题.6、D【解题分析】
根据圆锥的体积求出底面圆的半径和高,求出母线长,即可计算圆锥的表面积.【题目详解】圆锥的高和底面半径之比,∴,又圆锥的体积,即,解得;∴,母线长为,则圆锥的表面积为.故选:D.【题目点拨】本题考查圆锥的体积和表面积公式,考查计算能力,属于基础题.7、B【解题分析】
连接,可证是异面直线与所成的角或其补角,求出此角即可.【题目详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【题目点拨】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.8、C【解题分析】
利用基本不等式及函数的单调性即可判断.【题目详解】解:对于.时,,故错误.对于.,可得,,当且仅当,即时取等号,故最小值不可能为1,故错误.对于,可得,,当且仅当时取等号,最小值为1.对于.,函数在上单调递增,在上单调递减,,故不对;故选:.【题目点拨】本题考查基本不等式,难点在于应用基本不等式时对“一正二定三等”条件的理解与灵活应用,属于中档题.9、B【解题分析】
从图形中可以看出样本A的数据均不大于10,而样本B的数据均不小于10,A中数据波动程度较大,B中数据较稳定,由此得到结论.【题目详解】∵样本A的数据均不大于10,而样本B的数据均不小于10,,由图可知A中数据波动程度较大,B中数据较稳定,.故选B.10、D【解题分析】
根据条件知:关于直线、的位置关系异面或者平行,故没有公共点.【题目详解】若平面平面,直线,直线,则关于直线、的位置关系是异面或者平行,所以、没有公共点.故答案选D【题目点拨】本题考查了直线,平面的位置关系,意在考查学生的空间想象能力.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】
易知的周期为,从而化简求得.【题目详解】的周期为,且,又,.故答案为:【题目点拨】本题考查了正弦型函数的周期以及利用周期求函数值,属于基础题.12、【解题分析】
根据终边相同的角的定义可得答案.【题目详解】与30°角终边相同的角,故答案为:【题目点拨】本题考查了终边相同的角的定义,属于基础题.13、【解题分析】
过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【题目详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【题目点拨】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.14、4【解题分析】
模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【题目详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【题目点拨】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.15、0【解题分析】
直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【题目详解】解:,故答案为:0.【题目点拨】本题主要考查数列极限的运算法则,属于基础知识的考查.16、【解题分析】
由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【题目详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【题目点拨】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)在和中分别对使用余弦定理,可推出与的关系,即可得出是一个定值;(2)求出的表达式,利用二次函数的基本性质以及余弦函数值的取范围,可得出的最大值.【题目详解】(1)在中,由余弦定理得,在中,由余弦定理得,,则,;(2),,则,由(1)知:,代入上式得:,配方得:,当时,取到最大值.【题目点拨】本题考查余弦定理的应用、三角形面积的求法以及二次函数最值的求解,解题的关键就是利用题中结论将问题转化为二次函数来求解,考查运算求解能力,属于中等题.18、,【解题分析】
利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值.【题目详解】,又是第四象限角,所以,所以,.【题目点拨】本题考查同角的三角函数的基本关系式、诱导公式以及二倍角公式,此题属于基础题.19、(1)(2)【解题分析】
(1)根据,由正弦定理化角为边,得,再根据余弦定理即可求出角C;(2)由余弦定理可得,又,结合基本不等式可求得.由中点公式的向量式得,再利用数量积的运算,即可求出的最大值.【题目详解】(1)依题意得,,由正弦定理得,,即,由余弦定理得,,又因为,所以.(2)∵,,∴,即.∵为中点,所以,∴当且仅当时,等号成立.所以的最大值为.【题目点拨】本题主要考查利用正、余弦定理解三角形,以及利用中点公式的向量式结合基本不等式解决中线的最值问题,意在考查学生的逻辑推理和数学运算能力,属于中档题.20、(1)或;(2).【解题分析】
(1)由题化简得.再解方程即得解;(2)由题得在上恒成立,再求不等式右边函数的最小值即得解.【题目详解】解:(1)因为,,所以.因为,所以.解得或.故的取值集合为.(2)由(1)可知,所以在上恒成立.因为,所以,所以在上恒成立.设,则.所以.因为,所以,所以.故的取值范围为.【题目点拨】本题主要考查三角恒等变换和解三角方程,考查三角函数最值的求法和恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.21、(1),,;(2),.【解题分析】
(1)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国聚丙烯用阻燃剂项目商业计划书
- 2025年信息系统项目管理师考试项目合同管理试题
- 素食餐厅syb创业计划书
- 2025年中国羟基镍铁粉项目商业计划书
- 降解餐具项目创业计划书
- 黄柏种植项目商业计划书
- 2025年零售门店数字化顾客购物行为数据分析报告
- 2025年工业互联网平台联邦学习隐私保护在智能家居中的应用前景展望报告
- 2025年智能家居互联互通标准与智能家居产业投资风险分析报告
- 医美器械市场前景分析:2025年市场需求预测与产品创新方向研究报告
- 2022年甘肃省天水市中考生物真题含答案2
- 2024年湖北三新供电服务有限公司招聘笔试参考题库含答案解析
- 徒手整形 培训课件
- 市场营销学电子教案
- 《内蒙古乳制品出口贸易发展现状、问题及完善对策研究》10000字
- 研究生开题报告评审表
- 《网络安全与个人信息保护》主题班会课件
- 建筑集团公司商务管理手册(投标、合同、采购)分册
- 苏教版二年级下册《磁铁的磁力》课件
- 幼儿园课件小小银行家
- 美的空调制造工艺手册
评论
0/150
提交评论