




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省孝义市第四中学数学高一下期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能2.已知数列满足,且,其前n项之和为,则满足不等式的最小整数n是()A.5 B.6 C.7 D.83.已知二次函数,当时,其抛物线在轴上截得线段长依次为,则的值是A.1 B.2 C.3 D.44.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.155.记动点P是棱长为1的正方体的对角线上一点,记.当为钝角时,则的取值范围为()A. B. C. D.6.已知,与的夹角,则在方向上的投影是()A. B. C.1 D.7.小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有、、三个木桩,木桩上套有编号分别为、、、、、、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为()A. B. C. D.8.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.49.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在河岸边选定一点C,测出AC的距离为502m,∠ACB=45∘,∠CAB=105A.100m B.50C.1002m10.若集合A=α|α=π6+kπ,k∈ZA.ϕ B.π6 C.-π二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.(结果用反三角函数表示)12.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.13.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.14.已知,则____.15.已知等差数列的公差为2,若成等比数列,则________.16.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A、B、C的对边分别为a、b、c,面积为S,已知(Ⅰ)求证:成等差数列;(Ⅱ)若求.18.已知数列是等差数列,数列是等比数列,且,记数列的前项和为,数列的前项和为.(1)若,求序数的值;(2)若数列的公差,求数列的公比及.19.2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5),第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示.已知第三组的频数是第五组频数的3倍.(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.20.某科技创新公司在第一年年初购买了一台价值昂贵的设备,该设备的第1年的维护费支出为20万元,从第2年到第6年,每年的维修费增加4万元,从第7年开始,每年维修费为上一年的125%.(1)求第n年该设备的维修费的表达式;(2)设,若万元,则该设备继续使用,否则须在第n年对设备更新,求在第几年必须对该设备进行更新?21.已知等差数列的前n项和为,且,.(1)求;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【题目详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【题目点拨】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.2、C【解题分析】
首先分析题目已知3an+1+an=4(n∈N*)且a1=9,其前n项和为Sn,求满足不等式|Sn﹣n﹣6|<的最小整数n.故可以考虑把等式3an+1+an=4变形得到,然后根据数列bn=an﹣1为等比数列,求出Sn代入绝对值不等式求解即可得到答案.【题目详解】对3an+1+an=4变形得:3(an+1﹣1)=﹣(an﹣1)即:故可以分析得到数列bn=an﹣1为首项为8公比为的等比数列.所以bn=an﹣1=8×an=8×+1所以|Sn﹣n﹣6|=解得最小的正整数n=7故选C.【题目点拨】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列an﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.3、A【解题分析】
当时,,运用韦达定理得,运用裂项相消求和可得由此能求出【题目详解】当时,,由,可得,,由,.故选:A.【题目点拨】本题主要考查了函数的极限的运算,裂项相消求和,根与系数的关系,属于中档题.4、B【解题分析】
已知三次投篮共有20种,再得到恰有两次命中的事件的种数,然后利用古典概型的概率公式求解.【题目详解】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B【题目点拨】本题主要考古典概型的概率求法,还考查了运算求解的能力,属于基础题.5、B【解题分析】
建立空间直角坐标系,利用∠APC不是平角,可得∠APC为钝角等价于cos∠APC<0,即
,从而可求λ的取值范围.【题目详解】
由题设,建立如图所示的空间直角坐标系D-xyz,
则有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)
∴
=(1,1,-1),∴
=(λ,λ,-λ),
∴
=
+
=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)
=
+
=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)
显然∠APC不是平角,所以∠APC为钝角等价于cos∠APC<0
∴
∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得
<λ<1
因此,λ的取值范围是(
,1),故选B.
点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.6、A【解题分析】
根据向量投影公式计算即可【题目详解】在方向上的投影是:故选:A【题目点拨】本题考查向量投影的概念及计算,属于基础题7、B【解题分析】
假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.【题目详解】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,,易知.设,得,对比得,,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故选:B.【题目点拨】本题考查数列递推公式的应用,同时也考查了利用待定系数法求数列的通项,解题的关键就是利用题意得出数列的递推公式,考查推理能力与运算求解能力,属于中等题.8、D【解题分析】
利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【题目详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【题目点拨】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.9、A【解题分析】
计算出ΔABC三个角的值,然后利用正弦定理可计算出AB的值.【题目详解】在ΔABC中,AC=502m,∠ACB=45∘,由正弦定理得ABsin∠ACB=ACsin【题目点拨】本题考查正弦定理解三角形,要熟悉正弦定理解三角形对三角形已知元素类型的要求,考查运算求解能力,属于基础题.10、B【解题分析】
先化简集合A,B,再求A∩B.【题目详解】由题得B={x|-1≤x≤3},A=⋯所以A∩B=π故选:B【题目点拨】本题主要考查一元二次不等式的解法和集合的交集运算,意在考查学生对这些知识的理解掌握水平,属于基础题,二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】
由条件利用反三角函数的定义和性质即可求解.【题目详解】,则,故答案为:【题目点拨】本题考查了反三角函数的定义和性质,属于基础题.12、(1)【解题分析】
利用线线平行的传递性、线面垂直的判定定理判定.【题目详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【题目点拨】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.13、【解题分析】
设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【题目详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【题目点拨】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.14、【解题分析】
由于,则,然后将代入中,化简即可得结果.【题目详解】,,,故答案为.【题目点拨】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.15、【解题分析】
利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【题目详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案为-2..【题目点拨】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..16、【解题分析】
根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【题目详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【题目点拨】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ)4.【解题分析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角兴中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(4)在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.试题解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差数列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考点:三角函数与解三角形.18、(1);(2),.【解题分析】
(1)先设等差数列的公差为,根据题中条件,求出公差,再由通项公式,得到,即可求出结果;(2)先由题意求出,得到等比数列的公比,再由等比数列的求和公式,即可得出结果.【题目详解】(1)设等差数列的公差为,因为,,所以,解得:;又,所以,即,解得:;(2)因为数列的公差,,所以;因此等比数列的公比为,所以其前项和为.【题目点拨】本题主要考查等差数列与等比数列的综合,熟记通项公式与求和公式即可,属于常考题型.19、(1)a=0.06,平均值为12.25小时(2)【解题分析】
(1)由频率分布直方图可得第三组和第五组的频率之和,第三组的频率,由此能求出a和该样本数据的平均数,从而可估计该校学生一周课外阅读时间的平均值;(2)从第3、4、5组抽取的人数分别为3、2、1,设为A,B,C,D,E,F,利用列举法能求出从该6人中选拔2人,从而得到这2人来自不同组别的概率.【题目详解】(1)由频率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中学生物试题及答案
- 中医适宜技术试题及答案
- 浙江省9+1高中联盟长兴中学2025年高二数学第二学期期末质量跟踪监视模拟试题含解析
- 长春市第十一中学2025年物理高二第二学期期末联考试题含解析
- 浙江省绍兴市绍兴一中2025年数学高二第二学期期末质量跟踪监视模拟试题含解析
- 云南省泸水五中2025届物理高二第二学期期末检测模拟试题含解析
- 盐城市时杨中学高二下学期期中考试数学试题
- 盐城市射阳二中高一上学期教学质量调研(三)英语试题
- 新能源产业厂房出售与技术研发合同
- 车辆租赁公司市场拓展及战略联盟合同
- 教研组工作汇报课件
- 临终关怀服务技术创新与应用探索
- 渤海大学《材料合成与制备技术》2023-2024学年第一学期期末试卷
- 重度哮喘诊断与处理中国专家共识(2024)解读
- 鲁科版选修3《物质结构与性质》全一册学案有答案
- 六年级科学下册知识点梳理
- 人力资源(人事)及行政管理制度体系资料文件
- 十年(2015-2024)高考真题数学分项汇编(全国)专题03 平面向量(学生卷)
- 管线探挖方案
- 期末质量测试卷(试题)-2023-2024学年牛津上海版(三起)英语五年级下册
- 中药连翘课件
评论
0/150
提交评论