




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省宁波市第七中学高一数学第二学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2B.若,则a>bC.若a3>b3且ab<0,则D.若a2>b2且ab>0,则2.函数,当时函数取得最大值,则()A. B. C. D.3.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则()A. B.C. D.4.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.5.设某曲线上一动点到点的距离与到直线的距离相等,经过点的直线与该曲线相交于,两点,且点恰为等线段的中点,则()A.6 B.10 C.12 D.146.设集合,集合为函数的定义域,则()A. B. C. D.7.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.8.在中,角的对边分别是,,则的形状为A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形9.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.10.设、、为平面,为、、直线,则下列判断正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知中,,且,则面积的最大值为__________.12.不等式的解集是_______.13.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.14.方程的解集为____________.15.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值为________.16.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数是上的有界函数,其中称为函数的上界.已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数的取值范围;(3)若,函数在上的上界是,求的解析式.18.已知等差数列中,,.(1)求数列的通项公式;(2)求数列的前项和.19.已知是公差不为0的等差数列,,,成等比数列,且.(1)求数列的通项公式;(2)若,数列的前项和为,证明:.20.已知函数f(x)=sinωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为.(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.21.的内角所对的边分别为,且.(1)求角;(2)若,且的面积为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据不等式的性质,对A、B、C、D四个选项通过举反例进行一一验证.【题目详解】A.若a>b,则ac2>bc2(错),若c=0,则A不成立;B.若,则a>b(错),若c<0,则B不成立;C.若a3>b3且ab<0,则(对),若a3>b3且ab<0,则D.若a2>b2且ab>0,则(错),若,则D不成立.故选:C.【题目点拨】此题主要考查不等关系与不等式的性质及其应用,例如举反例法求解比较简单.两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.2、A【解题分析】
根据三角恒等变换的公式化简得,其中,再根据题意,得到,求得,结合诱导公式,即可求解.【题目详解】由题意,根据三角恒等变换的公式,可得,其中,因为当时函数取得最大值,即,即,可得,即,所以.故选:A.【题目点拨】本题主要考查了三角恒等变换的应用,以及诱导公式的化简求值,其中解答中熟记三角恒等变换的公式,合理利用三角函数的诱导公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解题分析】
利用甲、乙两名同学6次考试的成绩统计直接求解.【题目详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,.故选:.【题目点拨】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题.4、C【解题分析】
试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.5、B【解题分析】由曲线上一动点到点的距离与到直线的距离相等知该曲线为抛物线,其方程为,分别过点向抛物线的准线作垂线,垂足分别为,由梯形的中位线定理知,所以,故选B.6、B【解题分析】
解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【题目详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【题目点拨】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.7、B【解题分析】
求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【题目详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【题目点拨】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.8、A【解题分析】
先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【题目详解】因为,所以,,因此,选A.【题目点拨】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.9、C【解题分析】
将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.10、D【解题分析】
根据线面、面面有关的定理,对四个选项逐一分析,由此得出正确选项.【题目详解】A选项不正确,因为根据面面垂直的性质定理,需要加上:在平面内或者平行于,这个条件,才能判定.B选项不正确,因为可能平行于.C选项不正确,因为当时,或者.D选项正确,根据垂直于同一条直线的两个平面平行,得到,直线,则可得到.综上所述,本小题选D.【题目点拨】本小题主要考查空间线面、面面位置关系有关命题真假性的判断,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先利用正弦定理求出c=2,分析得到当点在的垂直平分线上时,边上的高最大,的面积最大,利用余弦定理求出,最后求面积的最大值.【题目详解】由可得,由正弦定理,得,故,当点在的垂直平分线上时,边上的高最大,的面积最大,此时.由余弦定理知,,即,故面积的最大值为.故答案为【题目点拨】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.12、【解题分析】
且,然后解一元二次不等式可得解集.【题目详解】解:,∴且,或,不等式的解集为,故答案为:.【题目点拨】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.13、【解题分析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【题目详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【题目点拨】本题考查直线的方程,属于基础题.14、或【解题分析】
首先将原方程利用辅助角公式化简为,再求出的值即可.【题目详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【题目点拨】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.15、-3【解题分析】试题分析:由两直线平行可得:,经检验可知时两直线重合,所以.考点:直线平行的判定.16、【解题分析】
根据题意,可令,结合,再进行整体代换即可求解【题目详解】令,则,,,则,,,则函数值域为故答案为:【题目点拨】本题考查3倍角公式的使用,函数的转化思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3).【解题分析】
(1)通过判断函数的单调性,求出的值域,进而可判断在上是否为有界函数;(2)利用题中所给定义,列出不等式,换元,转化为恒成立问题,通过分参求构造函数的最值,就可求得实数的取值范围;(3)通过分离常数法求的值域,利用新定义进而求得的解析式.【题目详解】(1)当时,,由于在上递减,∴函数在上的值域为,故不存在常数,使得成立,∴函数在上不是有界函数(2)在上是以3为上界的有界函数,即,令,则,即由得,令,在上单调递减,所以由得,令,在上单调递增,所以所以;(3)在上递减,,即,当时,即当时,当时,即当时,∴.【题目点拨】本题主要考查学生利用所学知识解决创新问题的能力,涉及到函数求值域的有关方法,以及恒成立问题的常见解决思想.18、(1)(2)【解题分析】
(1)先设等差数列的公差为,根据题中条件求出公差,即可得出通项公式;(2)根据前项和公式,即可求出结果.【题目详解】(1)依题意,设等差数列的公差为,因为,所以,又,所以公差,所以.(2)由(1)知,,所以【题目点拨】本题主要考查等差数列,熟记等差数列的通项公式与前项和公式即可,属于基础题型.19、(1)(2)证明见解析【解题分析】
(1)由题意列式求得数列的首项和公差,然后代入等差数列的通项公式得答案.
(2)求出数列的通项,利用裂项相消法求出数列的前项和得答案.【题目详解】(1)差数列中,,成等比数列有:即,得所以又,即,.所以.(2)所以.所以所以【题目点拨】本题考查了等差数列的通项公式,等比数列的性质,裂项相消法求数列的前项和,是中档题.20、(1)f(x)=sin.(2)【解题分析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin2ωx+×-=sin2ωx+cos2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省司法厅直属事业单位招聘考试真题2025
- 【语文】湖南省名校联考联合体2024-2025学年高一下学期期末考试试题(解析版)
- 综合解析苏科版八年级物理下册《力与运动》同步测评试题(含答案解析)
- 重难点解析人教版八年级物理上册第5章透镜及其应用达标测试试卷(解析版含答案)
- 税务局国考行测题库及参考答案详解【能力提升】
- 消防维保国考题库附答案详解(夺分金卷)
- 国考行测题库结构附参考答案详解(夺分金卷)
- 国考行测题库结构【名师系列】附答案详解
- 国考题库文件下载附完整答案详解(必刷)
- 国考行测题库比例附参考答案详解【突破训练】
- 四川甘孜州甘孜县招聘警务辅助人员笔试真题2024
- 牙周病学课件
- 大型体育馆满堂外脚手架施工方案
- 2025年广东佛山职业病诊断(物理因素所致职业病)模拟题库及答案
- 西宁市城中区面向社会公开招考社区工作者及储备人员的考试参考试题及答案解析
- 2025-2030中国燃气管道第三方施工破坏防控体系构建研究报告
- 数据库版本管理手册
- 2025年交管12123版学法减分全部试题及答案解析
- 建设工程造价鉴定申请书
- 安全监控设备方案
- 《工程勘察设计收费标准》(2002年修订本)
评论
0/150
提交评论