2024届安徽省六安市高一数学第二学期期末教学质量检测试题含解析_第1页
2024届安徽省六安市高一数学第二学期期末教学质量检测试题含解析_第2页
2024届安徽省六安市高一数学第二学期期末教学质量检测试题含解析_第3页
2024届安徽省六安市高一数学第二学期期末教学质量检测试题含解析_第4页
2024届安徽省六安市高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省六安市高一数学第二学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.2.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.3.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.4.为了得到函数,(x∈R)的图象,只需将(x∈R)的图象上所有的点().A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位5.若,则下列不等式恒成立的是A. B. C. D.6.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.7.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限8.在中,角A、B、C的对边分别为a、b、c,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形9.已知数列是各项均为正数且公比不等于1的等比数列,对于函数,若数列为等差数列,则称函数为“保比差数列函数”,现有定义在上的如下函数:①,②,③;④,则为“保比差数列函数”的所有序号为()A.①② B.①②④ C.③④ D.①②③④10.已知,是两个不同的平面,是两条不同的直线,下列命题中错误的是()A.若∥,,,则B.若∥,,,则C.若,,,则⊥D.若⊥,,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.382与1337的最大公约数是__________.12.函数()的值域是__________.13.已知实数满足则的最小值为__________.14.命题“,”是________命题(选填“真”或“假”).15.若数列{an}满足a1=2,a16.已知均为正数,则的最大值为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的前n项和为,,.(1)求;(2)设,求数列的前n项和.18.如图,在三棱锥中,,分别为,的中点,且.(1)证明:平面;(2)若平面平面,证明:.19.已知.(1)求函数的最小正周期和对称轴方程;(2)若,求的值域.20.如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,(1)按下列要求写出函数的关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式,(2)请你选用(1)中的一个函数关系式,求出的最大值.21.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】关于的不等式,即的解集是,∴不等式,可化为,解得,∴所求不等式的解集是,故选C.2、A【解题分析】

利用正弦定理以及和与差的正弦公式可得答案;【题目详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【题目点拨】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.3、B【解题分析】

函数,由,可得,,因此即可得出.【题目详解】函数由,可得解得,∵在区间内没有零点,

.故选B.【题目点拨】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.4、D【解题分析】

根据函数的平移原则,即可得出结果.【题目详解】因为,,所以为了得到函数的图象,只需将的图象上所有的点向左平移个单位.故选D【题目点拨】本题主要考查三角函数的平移,熟记左加右减的原则即可,属于基础题型.5、D【解题分析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D6、B【解题分析】

根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【题目详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【题目点拨】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).7、A【解题分析】,对应点,在第四象限.8、D【解题分析】

由正弦定理化简,得到,由此得到三角形是等腰或直角三角形,得到答案.【题目详解】由题意知,,结合正弦定理,化简可得,所以,则,所以,得或,所以三角形是等腰或直角三角形.故选D.【题目点拨】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.9、B【解题分析】

设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,逐项验证数列{lnf(an)}为等差数列,即可得到结论.【题目详解】设数列{an}的公比为q(q≠1)①由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;②由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;③由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;④由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①②④故选:B.【题目点拨】本题考查新定义,考查对数的运算性质,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.10、A【解题分析】

根据平面和直线关系,依次判断每个选项得到答案.【题目详解】A.若,,,则如图所示情况,两直线为异面直线,错误其它选项正确.故答案选A【题目点拨】本题考查了直线平面的关系,找出反例是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、191【解题分析】

利用辗转相除法,求382与1337的最大公约数.【题目详解】因为,,所以382与1337的最大公约数为191,故填:.【题目点拨】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.12、【解题分析】

由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【题目详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【题目点拨】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.13、【解题分析】

本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【题目详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【题目点拨】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。14、真【解题分析】当时,成立,即命题“,”为真命题.15、2×【解题分析】

判断数列是等比数列,然后求出通项公式.【题目详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【题目点拨】本题考查等比数列的判断以及通项公式的求法,考查计算能力.16、【解题分析】

根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【题目详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【题目点拨】本题考查了重要不等式,把变形为是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)在等差数列中根据,,可求得其首项与公差,从而可求得;(2)可证明为等比数列,利用等比数列的求和公式计算即可.【题目详解】(1);(2),所以.【题目点拨】本题考查等比数列的前项和,着重考查等差数列的性质与通项公式及等比数列的前项和公式,属于基础题.18、(1)见解析(2)见解析【解题分析】

(1)先证明,再证明平面;(2)先证明平面,再证明.【题目详解】证明:(1)因为,分别为,的中点,所以.又平面,平面,所以平面.(2)因为,为中点,所以.又平面平面.平面平面,所以平面.又平面,所以.【题目点拨】本题主要考查空间几何元素位置关系的证明,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)对称轴为,最小正周期;(2)【解题分析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.【题目详解】(1)令,则的对称轴为,最小正周期;(2)当时,,因为在单调递增,在单调递减,在取最大值,在取最小值,所以,所以.【题目点拨】本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.20、(Ⅰ),;(Ⅱ).【解题分析】试题分析:(1)①通过求出矩形的边长,求出面积的表达式;②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值.试题解析:(1)①因为,所以,所以,.②当时,,则,又,所以,所以,().(2)由②得,,当时,取得最大值为.考点:1.三角函数中的恒等变换;2.两角和与差的正弦函数.【方法点睛】本题主要考查的是函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运用,计算能力,属于中档题,此题是课本题目的延伸,如果(2)选择(1)①中的解析式,需要用到导数求解,麻烦,不是命题者的本意,因此正确的选择是选择(1)②中的解析式,化成一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值,此类题目选择正确的解析式是求解容易与否的关键.21、(1);(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论