辽阳市重点中学2024届数学高一下期末调研模拟试题含解析_第1页
辽阳市重点中学2024届数学高一下期末调研模拟试题含解析_第2页
辽阳市重点中学2024届数学高一下期末调研模拟试题含解析_第3页
辽阳市重点中学2024届数学高一下期末调研模拟试题含解析_第4页
辽阳市重点中学2024届数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽阳市重点中学2024届数学高一下期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.化简sin2013o的结果是A.sin33o B.cos33o C.-sin33o D.-cos33o2.在中,为线段上的一点,,且,则A., B.,C., D.,3.设,则下列不等式中正确的是()A. B.C. D.4.已知向量,,则与夹角的大小为()A. B. C. D.5.已知函数,则下列说法正确的是()A.图像的对称中心是B.在定义域内是增函数C.是奇函数D.图像的对称轴是6.已知、都是公差不为0的等差数列,且,,则的值为()A.2 B.-1 C.1 D.不存在7.设l是直线,,是两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.直线的倾斜角是()A. B. C. D.9.已知实数满足,则的最大值为()A. B. C. D.10.已知向量,,,则实数的值为()A. B. C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若两个正实数满足,且不等式有解,则实数的取值范围是____________.12.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.13.已知数列的首项,其前项和为,且,若单调递增,则的取值范围是__________.14.如图,在B处观测到一货船在北偏西方向上距离B点1千米的A处,码头C位于B的正东千米处,该货船先由A朝着C码头C匀速行驶了5分钟到达C,又沿着与AC垂直的方向以同样的速度匀速行驶5分钟后到达点D,此时该货船到点B的距离是________千米.15.设数列的前项和为满足:,则_________.16.两圆交于点和,两圆的圆心都在直线上,则____________;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(,,)的部分图象如图所示,其中点是图象的一个最高点.(Ⅰ)求函数的解析式;(Ⅱ)已知且,求.18.设数列,,已知,,(1)求数列的通项公式;(2)设为数列的前项和,对任意.(i)求证:;(ii)若恒成立,求实数的取值范围.19.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.20.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.21.如图,在中,点在边上,为的平分线,.(1)求;(2)若,,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】试题分析:sin2013o=.考点:诱导公式.点评:直接考查诱导公式,我们要熟记公式.属于基础题型.2、A【解题分析】

根据相等向量的定义及向量的运算法则:三角形法则求出,利用平面向量基本定理求出x,y的值【题目详解】由题意,∵,∴,即,∴,即故选A.【题目点拨】本题以三角形为载体,考查向量的加法、减法的运算法则;利用运算法则将未知的向量用已知向量表示,是解题的关键.3、B【解题分析】

取,则,,只有B符合.故选B.考点:基本不等式.4、D【解题分析】

根据向量,的坐标及向量夹角公式,即可求出,从而根据向量夹角的范围即可求出夹角.【题目详解】向量,,则;∴;∵0≤<a,b>≤π;∴<a,b>=.故选:D.【题目点拨】本题考查数量积表示两个向量的夹角,已知向量坐标代入夹角公式即可求解,属于常考题型,属于简单题.5、A【解题分析】

根据正切函数的图象与性质逐一判断即可.【题目详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选.【题目点拨】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.6、C【解题分析】

首先根据求出数列、公差之间的关系,再代入即可。【题目详解】因为和都是公差不为零的等差数列,所以设故,可得又因为和代入则.故选:C.【题目点拨】本题主要考查了极限的问题以及等差数列的通项属于基础题。7、D【解题分析】

利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【题目详解】A.若,,则与可能平行,也可能相交,所以不正确.B.若,,则与可能的位置关系有相交、平行或,所以不正确.C.若,,则可能,所以不正确.D.若,,由线面平行的性质过的平面与相交于,则,又.

所以,所以有,所以正确.故选:D【题目点拨】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.8、B【解题分析】

先求斜率,即倾斜角的正切值,易得.【题目详解】,可知,即,故选B【题目点拨】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.9、A【解题分析】

由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【题目详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【题目点拨】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.10、A【解题分析】

将向量的坐标代入中,利用坐标相等,即可得答案.【题目详解】∵,∴.故选:A.【题目点拨】本题考查向量相等的坐标运算,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:因为不等式有解,所以,因为,且,所以,当且仅当,即时,等号是成立的,所以,所以,即,解得或.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.12、【解题分析】

利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【题目详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【题目点拨】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.13、【解题分析】由可得:两式相减得:两式相减可得:数列,,...是以为公差的等差数列,数列,,...是以为公差的等差数列将代入及可得:将代入可得要使得,恒成立只需要即可解得则的取值范围是点睛:本题考查了数列的递推关系求通项,在含有的条件中,利用来求通项,本题利用减法运算求出数列隔一项为等差数列,结合和数列为增数列求出结果,本题需要利用条件递推,有一点难度.14、3【解题分析】

先在中,由余弦定理算出和,然后在中由余弦定理即可求出.【题目详解】由题意可得,在中,所以由余弦定理得:即,所以因为所以所以所以在中有:即故答案为:3【题目点拨】本题考查三角形的解法,余弦定理的应用,是基本知识的考查.15、【解题分析】

利用,求得关于的递推关系式,利用配凑法证得是等比数列,由此求得数列的通项公式,进而求得的表达式,从而求得的值.【题目详解】当时,.由于,而,故,故答案为:.【题目点拨】本小题主要考查配凑法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.16、【解题分析】

由圆的性质可知,直线与直线垂直,,直线的斜率,,解得.故填:3.【题目点拨】本题考查了相交圆的几何性质,和直线垂直的关系,考查数形结合的思想与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)由最值和两个零点计算出和的值,再由最值点以及的的范围计算的值;(Ⅱ)先根据(Ⅰ)中解析式将表示出来,然后再利用两角和的正弦公式计算的值.【题目详解】解:(Ⅰ)由函数最大值为2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【题目点拨】根据三角函数图象求解析式的步骤:(1)由最值确定的值;(2)由周期确定的值;(3)由最值点或者图像上的点确定的取值.这里需要注意确定的值时,尽量不要选取平衡位置上的点,这样容易造成多解的情况.18、(1);(2)(i)见证明;(ii)【解题分析】

(1)计算可知数列为等比数列;(2)(i)要证即证{}恒为0;(ii)由前两问求出再求出,带入式子,再解不等式.【题目详解】(1),又,是以2为首项,为公比的等比数列,;(2)(i),又恒成立,即(ii)由,,两式相加即得:,,,,当n为奇数时,随n的增大而递增,且;当n为偶数时,随n的增大而递减,且;的最大值为,的最小值为2,解得,所以实数p的取值范围为.【题目点拨】本类试题,注意看问题,一般情况,问题都会指明解题方向19、(Ⅰ)(Ⅱ)【解题分析】

(1)根据二倍角和诱导公式可得的值;(2)根据面积公式求,然后利用余弦定理求,最后根据正弦定理求的值.【题目详解】(1),,所以原式整理为,解得:(舍)或,;(2),解得,根据余弦定理,,,代入解得:,.【题目点拨】本题考查了根据正余弦定理解三角形,属于简单题.20、(1),;(2)【解题分析】

(1)通过求解数列的通项公式,从而可以求出首项与公比,即可得到的通项公式;(2)化简,利用错位相减法求解数列的和即可.【题目详解】(1)∴,∴,∵,∴,∴,,∵,,∴,从而,∵数列为等比数列∴数列的公比为,从而;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论