2024届陕西省陕西师大附中数学高一下期末复习检测模拟试题含解析_第1页
2024届陕西省陕西师大附中数学高一下期末复习检测模拟试题含解析_第2页
2024届陕西省陕西师大附中数学高一下期末复习检测模拟试题含解析_第3页
2024届陕西省陕西师大附中数学高一下期末复习检测模拟试题含解析_第4页
2024届陕西省陕西师大附中数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省陕西师大附中数学高一下期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.02.直线的斜率是()A. B.13 C.0 D.3.在区间上随机地取一个数,则事件“”发生的概率为()A. B. C. D.4.下列命题正确的是()A.若,则 B.若,则C.若,,则 D.若,,则5.若曲线表示椭圆,则的取值范围是()A. B. C. D.或6.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生7.若且,则()A. B. C. D.8.已知为等差数列的前项和,,,则()A.2019 B.1010 C.2018 D.10119.()A.4 B. C.1 D.210.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢+矢).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.12.已知无穷等比数列的首项为,公比为,则其各项的和为__________.13.如图,在等腰直角三角形ABC中,,,以AB为直径在外作半圆O,P是半圆弧AB上的动点,点Q在斜边BC上,若,则的取值范围是________.14.函数在的递减区间是__________15.设向量满足,,,.若,则的最大值是________.16.某货船在处看灯塔在北偏东方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达处,看到灯塔在北偏东方向,此时货船到灯塔的距离为______海里.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥,平面ABCD,四边形ABCD是直角梯形,,,,E为PB中点.(1)求证:平面PCD;(2)求证:.18.解方程:.19.已知幂函数的图像过点.(1)求函数的解析式;(2)设函数在是单调函数,求实数的取值范围.20.如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.21.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.2、A【解题分析】

由题得即得直线的斜率得解.【题目详解】由题得,所以直线的斜率为.故选:A【题目点拨】本题主要考查直线的斜率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3、A【解题分析】由得,,所以,由几何概型概率的计算公式得,,故选.考点:1.几何概型;2.对数函数的性质.4、C【解题分析】

对每一个选项进行判断,选出正确的答案.【题目详解】A.若,则,取不成立B.若,则,取不成立C.若,,则,正确D.若,,则,取不成立故答案选C【题目点拨】本题考查了不等式的性质,找出反例是解题的关键.5、D【解题分析】

根据椭圆标准方程可得,解不等式组可得结果.【题目详解】曲线表示椭圆,,解得,且,的取值范围是或,故选D.【题目点拨】本题主要考查椭圆的标准方程以及不等式的解法,意在考查对基础知识掌握的熟练程度,属于简单题.6、D【解题分析】试题分析:A中两事件不是互斥事件;B中不是互斥事件;C中两事件既是互斥事件又是对立事件;D中两事件是互斥但不对立事件考点:互斥事件与对立事件7、A【解题分析】

利用同角的三角函数关系求得,再根据正弦的二倍角公式求解即可【题目详解】由题,因为,,所以或,因为,所以,则,所以,故选:A【题目点拨】本题考查正弦的二倍角公式的应用,考查同角的三角函数关系的应用,考查已知三角函数值求三角函数值问题8、A【解题分析】

利用基本元的思想,将已知条件转化为和的形式,列方程组,解方程组求得,进而求得的值.【题目详解】由于数列是等差数列,故,解得,故.故选:A.【题目点拨】本小题主要考查等差数列通项公式和前项和公式的基本量计算,属于基础题.9、A【解题分析】

分别利用和差公式计算,相加得答案.【题目详解】故答案为A【题目点拨】本题考查了正切的和差公式,意在考查学生的计算能力.10、C【解题分析】

首先根据图形计算出矢,弦,再带入弧田面积公式即可.【题目详解】如图所示:因为,,为等边三角形.所以,矢,弦..故选:C【题目点拨】本题主要考查扇形面积公式,同时考查学生对题意的理解,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、②③⑤【解题分析】

将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【题目详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【题目点拨】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.12、【解题分析】

根据无穷等比数列求和公式求出等比数列的各项和.【题目详解】由题意可知,等比数列的各项和为,故答案为:.【题目点拨】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.13、【解题分析】

建立直角坐标系,得出的坐标,利用数量积的坐标表示得出,结合正弦函数的单调性得出的取值范围.【题目详解】取中点为,建立如下图所示的直角坐标系则,设,,则,则设点,则,则当,即时,取最大值当,即时,取最小值则的取值范围是故答案为:【题目点拨】本题主要考查了利用数量积求参数以及求正弦型函数的最值,属于较难题.14、【解题分析】

利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【题目详解】,由得,,时,.即所求减区间为.故答案为.【题目点拨】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.15、【解题分析】

令,计算出模的最大值即可,当与同向时的模最大.【题目详解】令,则,因为,所以当,,因此当与同向时的模最大,【题目点拨】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.16、【解题分析】

由题意利用方位角的定义画出示意图,再利用三角形,解出的长度.【题目详解】解:由题意画出图形为:因为,,所以,又由于某船以每小时18海里的速度向正北方向航行,经过40分钟航行到,所以(海里).在中,利用正弦定理得:,所以;故答案为:.【题目点拨】此题考查了学生对于题意的正确理解,还考查了利用正弦定理求解三角形及学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)证明见详解【解题分析】

(1)取的中点,证出,再利用线面平行的判定定理即可证出.(2)利用线面垂直的判定定理可证出平面,再根据线面垂直的定义即可证出.【题目详解】如图,取的中点,连接,E为PB中点,,且,又,,,,为平行四边形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因为,,所以,,平面,又平面,.【题目点拨】本题考查了线面平行的判定定理、线面垂直的判定定理,要证线面平行,需先证线线平行;要证异面直线垂直,可先证线面垂直,此题属于基础题.18、或或【解题分析】

由倍角公式可将题目中的方程变形解出来【题目详解】因为所以或由得由得所以所以或所以或综上:或或【题目点拨】,我们在解题的时候要灵活选择.19、(1);(2).【解题分析】

(1)利用幂函数过点即可求出函数的解析式;(2)利用二次函数对称轴与区间的位置,即可求出实数的取值范围.【题目详解】(1)因为的图像过点,所以,则,所以函数的解析式为:;(2)由(1)得,所以函数的对称轴为,若函数在是单调函数,则或,即或,所以实数的取值范围为.【题目点拨】本题考查了幂函数解析式的求解,二次函数单调区间与对称轴的位置关系,属于一般题.20、(Ⅰ)见证明;(Ⅱ)【解题分析】

(Ⅰ)折叠前,AC⊥DE;,从而折叠后,DE⊥PF,DE⊥CF,由此能证明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.说明四边形DEBC为平行四边形.可得CB∥DE.由此能证明平面PBC⊥平面PCF.(Ⅱ)由题意根据勾股定理运算得到,又由(Ⅰ)的结论得到,可得平面,再利用等体积转化有,计算结果.【题目详解】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,,又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.【题目点拨】本题考查线面垂直、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查了三棱锥体积的求法,运用了转化思想,是中档题.21、(1)(8,62);(2)【解题分析】

(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【题目详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论