




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省阜新市海州高级中学数学高一第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若()A. B. C. D.2.边长为的正三角形中,点在边上,,是的中点,则()A. B. C. D.3.某程序框图如图所示,若输出的,则判断框内应填()A. B. C. D.4.已知为等差数列,为其前项和.若,则()A. B. C. D.5.已知向量,若,则()A. B. C. D.6.已知函数,且此函数的图象如图所示,由点的坐标是()A. B. C. D.7.如图,若长方体的六个面中存在三个面的面积分别是2,3,6,则该长方体中线段的长是()A. B. C.28 D.8.在中,已知,则的面积为()A. B. C. D.9.矩形中,,若在该矩形内随机投一点,那么使得的面积不大于3的概率是()A. B. C. D.10.在中,角,,的对边分别为,,,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________12.一船自西向东匀速航行,上午10时到达一座灯塔的南偏西距塔64海里的处,下午2时到达这座灯塔的东南方向的处,则这只船的航行速度为__________海里/小时.13.若等比数列的各项均为正数,且,则等于__________.14.在中,角,,所对的边分别为,,,若,则为______三角形.15.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____16.在等比数列中,已知,则=________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量.(1)若,且,求实数的值;(2)若,且与的夹角为,求实数的值.18.已知等比数列的公比是的等差中项,数列的前项和为.(1)求数列的通项公式;(2)求数列的前项和.19.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间20.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.21.已知.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求函数在时的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.2、D【解题分析】
,故选D.3、A【解题分析】
根据程序框图的结构及输出结果,逆向推断即可得判断框中的内容.【题目详解】由程序框图可知,,则所以此时输出的值,因而时退出循环.因而判断框的内容为故选:A【题目点拨】本题考查了根据程序框图的输出值,确定判断框的内容,属于基础题.4、D【解题分析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.5、A【解题分析】
先根据向量的平行求出的值,再根据向量的加法运算求出答案.【题目详解】向量,,
解得,
∴,
故选A.【题目点拨】本题考查了向量的平行和向量的坐标运算,属于基础题.6、B【解题分析】
先由函数图象与轴的相邻两个交点确定该函数的最小正周期,并利用周期公式求出的值,再将点代入函数解析式,并结合函数在该点附近的单调性求出的值,即可得出答案。【题目详解】解:由图象可得函数的周期∴,得,将代入可得,∴(注意此点位于函数减区间上)∴由可得,∴点的坐标是,故选:B.【题目点拨】本题考查利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性。7、A【解题分析】
由长方体的三个面对面积先求出同一点出发的三条棱长,即可求出结果.【题目详解】设长方体从一个顶点出发的三条棱的长分别为,且,,,则,,,所以长方体中线段的长等于.【题目点拨】本题主要考查简单几何体的结构特征,属于基础题型.8、B【解题分析】
根据三角形的面积公式求解即可.【题目详解】的面积.
故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.9、C【解题分析】
先求出的点的轨迹(一条直线),然后由面积公式可知时点所在区域,计算其面积,利用几何概型概率公式计算概率.【题目详解】设到的距离为,,则,如图,设,则点在矩形内,,,∴所求概率为.故选C.【题目点拨】本题考查几何概型概率.解题关键是确定符合条件点所在区域及其面积.10、A【解题分析】
由余弦定理可直接求出边的长.【题目详解】由余弦定理可得,,所以.故选A.【题目点拨】本题考查了余弦定理的运用,考查了计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.12、【解题分析】由,行驶了4小时,这只船的航行速度为海里/小时.【题目点拨】本题为解直角三角形应用题,利用直角三角形边角关系表示出两点间的距离,在用辅助角公式变形求值,最后利用速度公式求出结果.13、50【解题分析】由题意可得,=,填50.14、等腰或直角【解题分析】
根据正弦定理化简得到,得到,故或,得到答案.【题目详解】利用正弦定理得到:,化简得到即故或故答案为等腰或直角【题目点拨】本题考查了正弦定理和三角恒等变换,漏解是容易发生的错误.15、【解题分析】
以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【题目详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【题目点拨】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.16、【解题分析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据平面向量加法和数乘的坐标表示公式、数量积的坐标表示公式,结合两个互相垂直的平面向量数量积为零,进行求解即可;(2)利用平面向量夹角公式进行求解即可.【题目详解】(1)当时,.因为,所以;(2)当时,所以有,因为与的夹角为,所以有.【题目点拨】本题考查了平面向量运算的坐标表示公式,考查了平面向量夹角公式,考查了数学运算能力.18、(1),;(2).【解题分析】
(1)先由题意,列出方程组,求出首项与公比,即可得出通项公式;(2)根据题意,求出,再由(1)的结果,得到,利用错位相减法,即可求出结果.【题目详解】(1)因为等比数列的公比,,是的等差中项,所以,即,解得,因此,;(2)因为数列的前项和为,所以,()又当也满足上式,所以,;由(1),;所以其前项和①因此②①式减去②式可得:,因此.【题目点拨】本题主要考查等差数列与等比数列的综合应用,以及错位相减法求数列的和,熟记等差数列与等比数列的通项公式以及求和公式即可,属于常考题型.19、(1)f(x)的最小正周期为π,最大值为;(2)f(x)在上单调递增;在上单调递减.【解题分析】
(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得的最小正周期和最大值.(2)根据,利用正弦函数的单调性,即可求得在上的单调区间.【题目详解】解:(1)函数,即故函数的周期为,最大值为.(2)当时,,故当时,即时,为增函数;当时,即时,为减函数;即函数在上单调递增;在上单调递减.【题目点拨】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.20、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解题分析】
试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《钓鱼的启示》读后感15篇
- 蓝莲花设计工作室创业计划
- 新疆乌鲁木齐市实验学校2023-2024学年高三上学期1月月考历史含解析
- 重庆市黔江中学2021-2022学年高三上学期10月月考政治题 含解析
- 武汉城市职业学院《体育政策与法规》2023-2024学年第二学期期末试卷
- 开展2025年《安全生产月》活动方案 (3份)
- 辽宁理工职业大学《环境科学实验Ⅳ(环境生物学)》2023-2024学年第二学期期末试卷
- 成都农业科技职业学院《资源与环境(环境工程)领域论文写作指导》2023-2024学年第二学期期末试卷
- 新疆第二医学院《高级人工智能》2023-2024学年第二学期期末试卷
- 广州软件学院《模拟系统集成一》2023-2024学年第二学期期末试卷
- 2025网络安全协议合同
- 混凝土考试试题及答案
- 初中历史明清时期的科技与文化 课件 2024-2025学年统编版七年级历史下册
- 广东2025年广东省生物制品与药物研究所招聘12人笔试历年参考题库附带答案详解
- 2024北京西城区五年级(下)期末英语试题及答案
- 2025年上半年发展对象题库(含答案)
- 《古埃及文明》课件
- 历届全国初中应用物理知识竞赛汇编
- 输血管理制度
- 国企笔试招聘题目
- (高清版)JTGT 3650-01-2022 公路桥梁施工监控技术规程
评论
0/150
提交评论