广东省兴宁市沐彬中学2024届高一数学第二学期期末统考试题含解析_第1页
广东省兴宁市沐彬中学2024届高一数学第二学期期末统考试题含解析_第2页
广东省兴宁市沐彬中学2024届高一数学第二学期期末统考试题含解析_第3页
广东省兴宁市沐彬中学2024届高一数学第二学期期末统考试题含解析_第4页
广东省兴宁市沐彬中学2024届高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省兴宁市沐彬中学2024届高一数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔20000m,速度为900km/h,飞行员先看到山顶的俯角为30∘,经过80s后又看到山顶的俯角为75A.5000(3+1)C.5000(3-3)2.直线的倾斜角是()A. B. C. D.3.已知函数,则不等式的解集为()A. B. C. D.4.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是()A.中位数为14 B.众数为13 C.平均数为15 D.方差为195.已知函数,且不等式的解集为,则函数的图象为()A. B.C. D.6.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]7.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得,,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于A. B. C. D.8.已知,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知等差数列的前n项和为,则A.140 B.70 C.154 D.7710.角α的终边上有一点P(a,|a|),a∈R且a≠0,则sinα值为()A. B. C.1 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,,则______________.12.若实数满足不等式组则的最小值是_____.13.已知扇形的圆心角为,半径为5,则扇形的弧长_________.14.已知圆柱的底面圆的半径为2,高为3,则该圆柱的侧面积为________.15.设,,,,则数列的通项公式=.16.四名学生按任意次序站成一排,则和都在边上的概率是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一次人才招聘会上,有、两家公司分别开出了他们的工资标准:公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增,设某人年初被、两家公司同时录取,试问:(1)若该人分别在公司或公司连续工作年,则他在第年的月工资分别是多少;(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?18.已知单调递减数列的前项和为,,且,则_____.19.为迎接世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60000,四周空白的宽度为10cm,栏与栏之间的中缝空白的宽度为5cm,怎样确定广告矩形栏目高与宽的尺寸(单位:cm),能使整个矩形广告面积最小.20.已知数列满足:,,数列满足:().(1)证明:数列是等比数列;(2)求数列的前项和,并比较与的大小.21.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为、高为的等腰三角形,侧视图是一个底边长为、高为的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】分析:先求AB的长,在△ABC中,可求BC的长,进而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山顶的海拔高度.详解:如图,∠A=30°,∠ACB=45°,

AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30点睛:本题以实际问题为载体,考查正弦定理的运用,关键是理解俯角的概念,属于基础题.2、D【解题分析】

先求出直线的斜率,再求直线的倾斜角.【题目详解】由题得直线的斜率.故选:D【题目点拨】本题主要考查直线的斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.3、B【解题分析】

先判断函数的单调性,把转化为自变量的不等式求解.【题目详解】可知函数为减函数,由,可得,整理得,解得,所以不等式的解集为.故选B.【题目点拨】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.4、D【解题分析】从题设中所提供的茎叶图可知六个数分别是,所以其中位数是,众数是,平均数,方差是,应选答案D.5、B【解题分析】本题考查二次函数图像,二次方程的根,二次不等式的解集三者之间的关系.不等式的解集为,所以方程的两根是则解得所以则故选B6、B【解题分析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.7、D【解题分析】在中,由正弦定理得,解得在中,8、B【解题分析】∵,∴,,,∴,∴点在第二象限,故选B.点睛:本题主要考查了由三角函数值的符号判断角的终边位置,属于基础题;三角函数值符号记忆口诀记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.9、D【解题分析】

利用等差数列的前n项和公式,及等差数列的性质,即可求出结果.【题目详解】等差数列的前n项和为,.故选D.【题目点拨】本题考查等差数列的前n项和的求法和等差数列的性质,属于基础题.10、B【解题分析】

根据三角函数的定义,求出OP,即可求出的值.【题目详解】因为,所以,故选B.【题目点拨】本题主要考查三角函数的定义应用.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】

根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【题目详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【题目点拨】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.12、4【解题分析】试题分析:由于根据题意x,y满足的关系式,作出可行域,当目标函数z=2x+3y在边界点(2,0)处取到最小值z=2×2+3×0=4,故答案为4.考点:本试题主要考查了线性规划的最优解的运用.点评:解决该试题的关键是解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.13、【解题分析】

根据扇形的弧长公式进行求解即可.【题目详解】∵扇形的圆心角α,半径为r=5,∴扇形的弧长l=rα5.故答案为:.【题目点拨】本题主要考查扇形的弧长公式的计算,熟记弧长公式是解决本题的关键,属于基础题.14、【解题分析】

圆柱的侧面打开是一个矩形,长为底面的周长,宽为圆柱的高,即,带入数据即可.【题目详解】因为圆柱的底面圆的半径为2,所以圆柱的底面圆的周长为,则该圆柱的侧面积为.【题目点拨】此题考察圆柱侧面积公式,属于基础题目.15、2n+1【解题分析】由条件得,且,所以数列是首项为4,公比为2的等比数列,则.16、【解题分析】

写出四名学生站成一排的所有可能情况,得出和都在边上的情况即可求得概率.【题目详解】四名学生按任意次序站成一排,所有可能的情况为:,,,,共24种情况,其中和都在边上共有,4种情况,所以和都在边上的概率是.故答案为:【题目点拨】此题考查古典概型,根据古典概型求概率,关键在于准确求出基本事件总数和某一事件包含的基本事件个数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)公司:;公司:;(2)公司十年月工资总和为,公司十年月工资总和为,选公司;【解题分析】

(1)易得在两家公司每年的工资分别成等差和等比数列再求解即可.(2)根据(1)中的通项公式求解前10年的工资和比较大小即可.【题目详解】(1)易得在公司的工资成公差为500,首项为8000的等差数列,故在公司第年的月工资为.在公司的工资成公比为,首项为8000的等比数列.故在公司第年的月工资为.(2)由(1)得,在公司十年月工资总和在公司十年月工资总和.因为.故选公司.【题目点拨】本题主要考查了等差等比数列的实际应用题,需要根据题意找出首项公比公差再求和等.属于基础题型.18、【解题分析】

根据,再写出一个等式:,利用两等式判断并得到等差数列的通项,然后求值.【题目详解】当时,,∴.当时,,①,②①②,得,化简得,或,∵数列是递减数列,且,∴舍去.∴数列是等差数列,且,公差,故.【题目点拨】在数列中,其前项和为,则有:,利用此关系,可将与的递推公式转化为关于的等式,从而判断的特点.19、高200,宽100【解题分析】

设广告矩形栏目高与宽分别为acm,cm整个矩形广告面积为当且仅当时取等号20、(1)见证明;(2)见解析【解题分析】

(1)将原式变形为,进而得到结果;(2)根据第一问得到,错位相减得到结果.【题目详解】(1)由条件得,易知,两边同除以得,又,故数列是等比数列,其公比为.(2)由(1)知,则……①……②两式相减得即.【题目点拨】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.21、(1)1;(2)40+24【解题分析】

由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论