2024届云南省文山市数学高一第二学期期末考试试题含解析_第1页
2024届云南省文山市数学高一第二学期期末考试试题含解析_第2页
2024届云南省文山市数学高一第二学期期末考试试题含解析_第3页
2024届云南省文山市数学高一第二学期期末考试试题含解析_第4页
2024届云南省文山市数学高一第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省文山市数学高一第二学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,若,则等于()A. B. C. D.2.等差数列前项和为,满足,则下列结论中正确的是()A.是中的最大值 B.是中的最小值C. D.3.在中,,,则的外接圆半径为()A.1 B.2 C. D.4.已知,则等于()A. B. C. D.35.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,6.设函数的图象为,则下列结论正确的是()A.函数的最小正周期是B.图象关于直线对称C.图象可由函数的图象向左平移个单位长度得到D.函数在区间上是增函数7.若a、b、c>0且a(a+b+c)+bc=4-2,则2a+b+c的最小值为()A.-1 B.+1C.2+2 D.2-28.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.19.已知数列的前项和为,若,对任意的正整数均成立,则()A.162 B.54 C.32 D.1610.已知幂函数过点,则的值为()A. B.1 C.3 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若向量与垂直,则__________.12.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.13.在棱长均为2的三棱锥中,分别为上的中点,为棱上的动点,则周长的最小值为________.14.设()则数列的各项和为________15.已知函数,它的值域是__________.16.圆的一条经过点的切线方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合.(1)求;(2)若不等式的解集为,求不等式的解集.18.已知.(1)求与的夹角;(2)求.19.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.20.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.21.已知且,比较与的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

根据向量的坐标运算法则,依据题意列出等式求解.【题目详解】由题知:,,,因为,所以,故,故选:A.【题目点拨】本题考查向量的坐标运算,属于基础题.2、D【解题分析】本题考查等差数列的前n项和公式,等差数列的性质,二次函数的性质.设公差为则由等差数列前n项和公式知:是的二次函数;又知对应二次函数图像的对称轴为于是对应二次函数为无法确定所以根据条件无法确定有没有最值;但是根据二次函数图像的对称性,必有即故选D3、A【解题分析】

由同角三角函数关系式,先求得.再结合正弦定理即可求得的外接圆半径.【题目详解】中,由同角三角函数关系式可得由正弦定理可得所以,即的外接圆半径为1故选:A【题目点拨】本题考查了同角三角函数关系式的应用,正弦定理求三角形外接圆半径,属于基础题.4、C【解题分析】

等式分子分母同时除以即可得解.【题目详解】由可得.故选:C.【题目点拨】本题考查了三角函数商数关系的应用,属于基础题.5、B【解题分析】

由已知推导出,由此利用排除法能求出结果.【题目详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【题目点拨】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.6、B【解题分析】

利用函数的周期判断A的正误;通过x=函数是否取得最值判断B的正误;利用函数的图象的平移判断C的正误,利用函数的单调区间判断D的正误.【题目详解】对于A,f(x)的最小正周期为π,判断A错误;对于B,当x=,函数f(x)=sin(2×+)=1,∴选项B正确;对于C,把的图象向左平移个单位,得到函数sin[2(x+)]=sin(2x+,∴选项C不正确.对于D,由,可得,k∈Z,所以在上不恒为增函数,∴选项D错误;故选B.【题目点拨】本题考查三角函数的基本性质的应用,函数的单调性、周期性及函数图象变换,属于基本知识的考查.7、D【解题分析】由a(a+b+c)+bc=4-2,得(a+c)·(a+b)=4-2.∵a、b、c>0.∴(a+c)·(a+b)≤(当且仅当a+c=b+a,即b=c时取“=”),∴2a+b+c≥2=2(-1)=2-2.故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误8、D【解题分析】

试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质9、B【解题分析】

由,得到数列表示公比为3的等比数列,求得,进而利用,即可求解.【题目详解】由,可得,所以数列表示公比为3的等比数列,又由,,得,解得,所以,所以故选B.【题目点拨】本题主要考查了等比数列的定义,以及数列中与之间的关系,其中解答中熟记等比数列的定义和与之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解题分析】

设,代入点的坐标,求得,然后再求函数值.【题目详解】设,由题意,,即,∴.故选:C.【题目点拨】本题考查幂函数的解析式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】,所以,解得.12、92【解题分析】

由题可得,进而可得,再计算出,从而得出答案.【题目详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【题目点拨】本题考查求几个数的平均数,解题的关键是求出,属于一般题.13、【解题分析】

易证明中,且周长为,其中为定值,故只需考虑的最小值即可.【题目详解】由题,棱长均为2的三棱锥,故该三棱锥的四个面均为正三角形.又因为,故.故.且分别为上的中点,故.故周长为.故只需求的最小值即可.易得当时取得最小值为.故周长的最小值为.故答案为:【题目点拨】本题主要考查了立体几何中的距离最值问题,需要根据题意找到定量以及变量的最值情况即可.属于中档题.14、【解题分析】

根据无穷等比数列的各项和的计算方法,即可求解,得到答案.【题目详解】由题意,数列的通项公式为,且,所以数列的各项和为.故答案为:.【题目点拨】本题主要考查了无穷等比数列的各项和的求解,其中解答中熟记无穷等比数列的各项和的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】

由反余弦函数的值域可求出函数的值域.【题目详解】,,因此,函数的值域为.故答案为:.【题目点拨】本题考查反三角函数值域的求解,解题的关键就是依据反余弦函数的值域进行计算,考查计算能力,属于基础题.16、【解题分析】

根据题意,设为,设过点圆的切线为,分析可得在圆上,求出直线的斜率,分析可得直线的斜率,由直线的点斜式方程计算可得答案.【题目详解】根据题意,设为,设过点圆的切线为,圆的方程为,则点在圆上,则,则直线的斜率,则直线的方程为,变形可得,故答案为.【题目点拨】本题考查圆的切线方程,注意分析点与圆的位置关系.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由一元二次不等式的解法分别求出集合,再求交集即可;(2)由待定系数法求得,再代入不等式,解不等式即可得解.【题目详解】解:(1)因为集合,集合,即;(2)由不等式的解集为,则不等式等价于,即,即,即不等式等价于,即,解得或,故不等式的解集为.【题目点拨】本题考查了集合的运算,重点考查了一元二次不等式的解法,属基础题.18、(1);(2).【解题分析】

(1)由得到,又代入夹角公式,求出的值;(2)利用公式进行模的求值.【题目详解】(1)因为,所以,因为,因为,所以.(2).【题目点拨】本题考查数量积的运算及其变形运用,特别注意之间关系的运用与转化,考查基本运算能力.19、(1);(2).【解题分析】

(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;

(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【题目详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.

(2)当为偶数时,,当为奇数时,为偶数,

综上所述,当为偶数时,,当为奇数时,即.【题目点拨】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.20、(1)(2)或(3)直线RS恒过定点【解题分析】

(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的圆的方程,与圆联立可得,由求解即可【题目详解】(1)由题,设点到直线的距离为,则,则弦长,解得,所以圆的标准方程为:(2)当切线斜率不存在时,直线方程为,圆心到直线距离为2,故此时相切;当切线斜率存在时,设切线方程为,即,则,解得,则直线方程为,即,综上,切线方程为或(3)直线RS恒过定点,由题,,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论