山西省临汾市2024届高一数学第二学期期末检测试题含解析_第1页
山西省临汾市2024届高一数学第二学期期末检测试题含解析_第2页
山西省临汾市2024届高一数学第二学期期末检测试题含解析_第3页
山西省临汾市2024届高一数学第二学期期末检测试题含解析_第4页
山西省临汾市2024届高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市2024届高一数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若则一定有()A. B. C. D.2.过两点A,B(,的直线倾斜角是,则的值是()A.B.3C.1D.3.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.4.已知是定义在上不恒为的函数,且对任意,有成立,,令,则有()A.为等差数列 B.为等比数列C.为等差数列 D.为等比数列5.在正项等比数列中,,为方程的两根,则()A.9 B.27 C.64 D.816.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.247.下列函数中,既是偶函数又在区间上单调递减的函数是()A. B. C. D.8.对于一个给定的数列,定义:若,称数列为数列的一阶差分数列;若,称数列为数列的二阶差分数列.若数列的二阶差分数列的所有项都等于,且,则()A.2018 B.1009 C.1000 D.5009.已知的三个内角所对的边为,面积为,且,则等于()A. B. C. D.10.已知等差数列中,若,则()A.-21 B.-15 C.-12 D.-17二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,且,则___________.12.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.13.已知方程的两根分别为、、且,且__________.14.设公差不为零的等差数列的前项和为,若,则__________.15.已知数列满足:,,则使成立的的最大值为_______16.若Sn为等比数列an的前n项的和,8a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(Ⅱ)求甲、乙两人同在第3号车站下车的概率;(Ⅲ)求甲、乙两人在不同的车站下车的概率.18.已知直线与.(1)当时,求直线与的交点坐标;(2)若,求a的值.19.已知函数.(1)若在区间上的最小值为,求的值;(2)若存在实数,使得在区间上单调且值域为,求的取值范围.20.设全集为,集合,集合.(Ⅰ)求;(Ⅱ)若,求实数的取值范围.21.已知函数,数列中,若,且.(1)求证:数列是等比数列;(2)设数列的前项和为,求证:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选2、C【解题分析】试题分析:根据直线斜率的计算式有,解得.考点:直线斜率的计算式.3、A【解题分析】

用累乘法可得.利用错位相减法可得S,即可求解S10=22.【题目详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.4、C【解题分析】令,得到得到,.,说明为等差数列,故C正确,根据选项,排除A,D.∵.显然既不是等差也不是等比数列.故选C.5、B【解题分析】

由韦达定理得,再利用等比数列的性质求得结果.【题目详解】由已知得是正项等比数列本题正确选项:【题目点拨】本题考查等比数列的三项之积的求法,关键是对等比数列的性质进行合理运用,属于基础题.6、D【解题分析】由等差数列的性质可得,则,故选D.7、C【解题分析】

依次分析选项的奇偶性和在区间上的单调性即可得到答案.【题目详解】因为是奇函数,故A选项错误,因为是非奇非偶函数,故D选项错误,因为是偶函数,由函数图像知,在区间上单调递增,故B选项错误,因为是偶函数,由函数图像知,在区间上单调递减,故C选项正确.故选:C.【题目点拨】本题主要考查了函数的奇偶性的判断,二次函数单调性的判断,属于基础题.8、C【解题分析】

根据题目给出的定义,分析出其数列的特点为等差数列,利用等差数列求解.【题目详解】依题意知是公差为的等差数列,设其首项为,则,即,利用累加法可得,由于,即解得,,故.选C.【题目点拨】本题考查新定义数列和等差数列,属于难度题.9、C【解题分析】

利用三角形面积公式可得,结合正弦定理及三角恒等变换知识可得,从而得到角A.【题目详解】∵∴即∴∴∴,∴(舍)∴故选C【题目点拨】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.10、A【解题分析】

根据等差数列的前n项和公式得:,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【题目详解】,即数列是以为首项,为公差的等差数列故答案为:【题目点拨】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.12、【解题分析】

分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【题目详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【题目点拨】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.13、【解题分析】

由韦达定理和两角和的正切公式可得,进一步缩小角的范围可得,进而可求.【题目详解】方程两根、,,,,又,,,,,,,结合,,故答案为.【题目点拨】本题考查两角和与差的正切函数,涉及韦达定理,属中档题.14、【解题分析】

设出数列的首项和公差,根据等差数列通项公式和前项和公式,代入条件化简得和的关系,再代入所求的式子进行化简求值.【题目详解】解:设等差数列的首项为,公差为,由,得,得,.故答案为:【题目点拨】本题考查了等差数列通项公式和前n项和公式的简单应用,属于基础.15、4【解题分析】

从得到关于的通项公式后可得的通项公式,解不等式后可得使成立的的最大值.【题目详解】易知为等差数列,首项为,公差为1,∴,∴,令,∴,∴.故答案为:4【题目点拨】本题考查等差数列的通项的求法及数列不等式的解,属于容易题.16、-7【解题分析】设公比为q,则8a1q=-a1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(Ⅱ)(Ⅲ)【解题分析】(Ⅰ)甲、乙两人下车的所有可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(Ⅱ)设甲、乙两人同在第3号车站下车的的事件为A,则(Ⅲ)设甲、乙两人在不同的车站下车的事件为B,则18、(1);(2).【解题分析】

(1)当时,直线与联立即可.(2)两直线平行表示斜率相同且截距不同,联立方程求解即可.【题目详解】(1)当时,直线与,联立,解得,故直线与的交点坐标为.(2)因为,所以,即解得.【题目点拨】此题考察直线斜率,两直线平行表示斜率相等且截距不同(如果斜率和截距都相同则是同一条直线),属于基础简单题目.19、(1);(2).【解题分析】

(1)根据二次函数单调性讨论即可解决.(2)分两种情况讨论,分别讨论单调递增和单调递减的情况即可解决.【题目详解】(1)若,即时,,解得:,若,即时,,解得:(舍去).(2)(ⅰ)若在上单调递增,则,则,即是方程的两个不同解,所以,即,且当时,要有,即,可得,所以;(ⅱ)若在上单调递减,则,则,两式相减得:,将代入(2)式,得,即是方程的两个不同解,所以,即,且当时要有,即,可得,所以,(iii)若对称轴在上,则不单调,舍弃.综上,.【题目点拨】本题主要考查了二次函数的综合问题,在解决二次函数问题时需要关注的是单调性、对称轴、最值、开口、等属于中等偏上的题.20、(Ⅰ)(Ⅱ)【解题分析】

(1)化简集合,按并集的定义,即可求解;(2)得,结合数轴,确定集合端点位置,即可求解.【题目详解】解:(Ⅰ)集合,集合,∴;(Ⅱ)由,且,∴,由题意知,∴,解得,∴实数的取值范围是.【题目点拨】本题考查集合间的运算,考查集合的关系求参数,属于基础题.21、(1)见解析;(2)见解析【解题分析】

(1)将代入到函数表达式中,得,两边都倒过来,即可证明数列是等比数列;(2)由(1)得出an的通项公式,然后根据不等式<在求和时进行放缩法的应用,再根据等比数列求和公式进行计算,即可证出.【题目详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论