湖南省常德市石门一中2024届数学高一下期末调研试题含解析_第1页
湖南省常德市石门一中2024届数学高一下期末调研试题含解析_第2页
湖南省常德市石门一中2024届数学高一下期末调研试题含解析_第3页
湖南省常德市石门一中2024届数学高一下期末调研试题含解析_第4页
湖南省常德市石门一中2024届数学高一下期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常德市石门一中2024届数学高一下期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则()A. B. C. D.2.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形3.函数y=tan(–2x)的定义域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}4.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为5.已知向量、的夹角为,,,则()A. B. C. D.6.在正项等比数列中,,数列的前项之和为()A. B. C. D.7.已知是两条不重合的直线,为两个不同的平面,则下列说法正确的是()A.若,是异面直线,那么与相交B.若//,,则C.若,则//D.若//,则8.下列函数中,最小值为2的函数是()A. B.C. D.9.已知数列共有项,满足,且对任意、,有仍是该数列的某一项,现给出下列个命题:(1);(2);(3)数列是等差数列;(4)集合中共有个元素.则其中真命题的个数是()A. B. C. D.10.若直线与直线平行,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.12.直线x-313.已知正数、满足,则的最小值是________.14.函数的定义域是________15.已知与之间的一组数据,则与的线性回归方程必过点__________.16.若,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的各项均为正数,且,,数列的前项和.(1)求;(2)记,求数列的前项和.18.已知直线和.(1)若与互相垂直,求实数的值;(2)若与互相平行,求与与间的距离,19.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.20.若直线与轴,轴的交点分别为,圆以线段为直径.(Ⅰ)求圆的标准方程;(Ⅱ)若直线过点,与圆交于点,且,求直线的方程.21.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由放缩法可得出,再利用特殊值法以及不等式的基本性质可判断各选项中不等式的正误.【题目详解】,,可得.取,,,则A、D选项中的不等式不成立;取,,,则B选项中的不等式不成立;且,由不等式的基本性质得,C选项中的不等式成立.故选:C.【题目点拨】本题考查不等式正误的判断,一般利用不等式的性质或特殊值法进行判断,考查推理能力,属于中等题.2、B【解题分析】

先化简sinAcosB=sinC=,即得三角形形状.【题目详解】由sinAcosB=sinC得所以sinBcosA=0,因为A,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案为A【题目点拨】本题主要考查三角恒等变换和三角函数的图像性质,意在考查学生对这些知识的掌握水平和分析推理能力.3、A【解题分析】

根据诱导公式化简解析式,由正切函数的定义域求出此函数的定义域.【题目详解】由题意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函数的定义域是{x|x≠+,k∈Z},故选:A.【题目点拨】本题考查正切函数的定义域,以及诱导公式的应用,属于基础题.4、C【解题分析】

A.时无最小值;

B.令,由,可得,即,令,利用单调性研究其最值;

C.令,令,利用单调性研究其最值;

D.当时,,无最小值.【题目详解】解:A.时无最小值,故A错误;

B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;

D.当时,,无最小值,故D不正确.

故选:C.【题目点拨】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.5、B【解题分析】

利用平面向量数量积和定义计算出,可得出结果.【题目详解】向量、的夹角为,,,则.故选:B.【题目点拨】本题考查利用平面向量的数量积来计算平面向量的模,在计算时,一般将模进行平方,利用平面向量数量积的定义和运算律进行计算,考查计算能力,属于中等题.6、B【解题分析】

根据等比数列的性质,即可解出答案。【题目详解】故选B【题目点拨】本题考查等比数列的性质,同底对数的运算,属于基础题。7、D【解题分析】

采用逐一验证法,结合线面以及线线之间的位置关系,可得结果.【题目详解】若,是异面直线,与也可平行,故A错若//,,也可以在内,故B错若也可以在内,故C错若//,则,故D对故选:D【题目点拨】本题主要考查线面以及线线之间的位置关系,属基础题.8、C【解题分析】

利用基本不等式及函数的单调性即可判断.【题目详解】解:对于.时,,故错误.对于.,可得,,当且仅当,即时取等号,故最小值不可能为1,故错误.对于,可得,,当且仅当时取等号,最小值为1.对于.,函数在上单调递增,在上单调递减,,故不对;故选:.【题目点拨】本题考查基本不等式,难点在于应用基本不等式时对“一正二定三等”条件的理解与灵活应用,属于中档题.9、D【解题分析】

对任意的、,有仍是该数列的某一项,可得出是该数列中的项,由于,可得,即,以此类推即可判断出结论.【题目详解】对任意、,有仍是该数列的某一项,,当时,则,必有,即,而或.若,则,而、、,舍去;若,此时,,同理可得.可得数列为:、、、、.综上可得:(1);(2);(3)数列是等差数列;(4)集合,该集合中共有个元素.因此,(1)(2)(3)(4)都正确.故选:D.【题目点拨】本题考查有关数列命题真假的判断,涉及数列的新定义,考查推理能力与分类讨论思想的应用,属于中等题.10、A【解题分析】由题意,直线,则,解得,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【题目详解】.故答案为:2【题目点拨】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.12、π【解题分析】

将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【题目详解】因为x-3所以y=33x-33则tanα=33,α=【题目点拨】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.13、.【解题分析】

利用等式得,将代数式与代数式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【题目详解】,所以,由基本不等式可得,当且仅当时,等号成立,因此,的最小值是,故答案为:.【题目点拨】本题考查利用基本不等式求最值,解题时要对代数式进行合理配凑,考查分析问题和解决问题的能力,属于中等题.14、【解题分析】

根据的值域为求解即可.【题目详解】由题.故定义域为.故答案为:【题目点拨】本题主要考查了反三角函数的定义域,属于基础题型.15、【解题分析】

根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【题目详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【题目点拨】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.16、【解题分析】

将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【题目详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【题目点拨】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)先设等比数列的公比为,再求解即可;(2)由已知条件可得,再利用错位相减法求和即可.【题目详解】解:(1)设等比数列的公比为,则,由,,则,即,则,(2)由数列的前项和,则,即当时,,即,又,所以,,①,②①-②得:,即.【题目点拨】本题考查了等比数列通项公式的求法,重点考查了错位相减法求数列前项和,属中档题.18、(1)(2)【解题分析】

(1)根据直线垂直的公式求解即可.(2)根据直线平行的公式求解,再利用平行线间的距离公式求解即可.【题目详解】解(1)∵与互相垂直,∴,解得.(2)由与互相平行,∴,解得.直线化为:,∴与间的距离.【题目点拨】本题主要考查了直线平行与垂直以及平行线间的距离公式.属于基础题.19、(Ⅰ)(Ⅱ)().【解题分析】试题分析:(Ⅰ)运用两角和的正弦公式对f(x)化简整理,由周期公式求ω的值;(Ⅱ)根据函数y=sinx的单调递增区间对应求解即可.试题解析:(Ⅰ)因为,所以的最小正周期.依题意,,解得.(Ⅱ)由(Ⅰ)知.函数的单调递增区间为().由,得.所以的单调递增区间为().【考点】两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2.利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.20、(Ⅰ);(Ⅱ)或.【解题分析】

(1)本题首先根据直线方程确定、两点坐标,然后根据线段为直径确定圆心与半径,即可得出圆的标准方程;(2)首先可根据题意得出圆心到直线的距离为,然后根据直线的斜率是否存在分别设出直线方程,最后根据圆心到直线距离公式即可得出结果。【题目详解】(1)令方程中的,得,令,得.所以点的坐标分别为.所以圆的圆心是,半径是,所以圆的标准方程为.(2)因为,圆的半径为,所以圆心到直线的距离为.若直线的斜率不存在,直线的方程为,符合题意.若直线的斜率存在,设其直线方程为,即.圆的圆心到直线的距离,解得.则直线的方程为,即.综上,直线的方程为或.【题目点拨】本题考查圆的标准方程与几何性质,考查直线和圆的位置关系,当直线与圆相交时,半径、弦长的一半以及圆心到直线距离可构成直角三角形,考查计算能力,在计算过程中要注意讨论直线的斜率是否存在,是中档题。21、(1)∠A=(2)AC边上的高为【解题分析】分析:(1)先根据平方关系求,再根据正弦定理求,即得;(2)根据三角形面积公式两种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论