2024届广东省深圳市福田区耀华实验学校国际班数学高一下期末达标检测模拟试题含解析_第1页
2024届广东省深圳市福田区耀华实验学校国际班数学高一下期末达标检测模拟试题含解析_第2页
2024届广东省深圳市福田区耀华实验学校国际班数学高一下期末达标检测模拟试题含解析_第3页
2024届广东省深圳市福田区耀华实验学校国际班数学高一下期末达标检测模拟试题含解析_第4页
2024届广东省深圳市福田区耀华实验学校国际班数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳市福田区耀华实验学校国际班数学高一下期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.2.若是第四象限角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面4.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.5.已知数列(,)具有性质:对任意、(),与两数中至少有一个是该数列中的一项,对于命题:①若数列具有性质,则;②若数列,,()具有性质,则;下列判断正确的是()A.①和②均为真命题 B.①和②均为假命题C.①为真命题,②为假命题 D.①为假命题,②为真命题6.若偶函数在上是增函数,则()A. B.C. D.不能确定7.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.8.在中,若,,,则()A., B.,C., D.,9.()A.0 B.1 C.-1 D.210.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同二、填空题:本大题共6小题,每小题5分,共30分。11.已知1,,,,4成等比数列,则______.12.设是数列的前项和,且,,则__________.13.已知向量夹角为,且,则__________.14.关于的不等式的解集是,则______.15.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.16.已知实数满足条件,则的最大值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,求的取值范围;(3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.18.己知数列是等比数列,且公比为,记是数列的前项和.(1)若=1,>1,求的值;(2)若首项,,是正整数,满足不等式|﹣63|<62,且对于任意正整数都成立,问:这样的数列有几个?19.已知是夹角为的单位向量,且,.(1)求;(2)求与的夹角.20.的内角的对边分别为,.(1)求;(2)若,的面积为,求.21.已知函数(),设函数在区间上的最大值为.(1)若,求的值;(2)若对任意的恒成立,试求的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

求出函数的周期,函数的奇偶性,判断求解即可.【题目详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.2、C【解题分析】

利用象限角的表示即可求解.【题目详解】由是第四象限角,则,所以,所以是第三象限角.故选:C【题目点拨】本题考查了象限角的表示,属于基础题.3、D【解题分析】

利用定理及特例法逐一判断即可。【题目详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【题目点拨】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。4、C【解题分析】

由题,连接,设其交平面于点易知平面,即(或其补角)为与平面所成的角,再利用等体积法求得AO的长度,即可求得的长度,可得结果.【题目详解】设正方体的边长为1,如图,连接,设其交平面于点,则易知,,又,所以平面,即得平面.在三棱锥中,由等体积法知,,即,解得,所以.连接,则(或其补角)为与平面所成的角.在中,.故选C.【题目点拨】本题考查了立体几何中线面角的求法,作出线面角是解题的关键,求高的长度会用到等体积法,属于中档题.5、A【解题分析】

本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证.【题目详解】解:①若数列具有性质,取数列中最大项,则与两数中至少有一个是该数列中的一项,而不是该数列中的项,是该数列中的项,又由,;故①正确;②数列,,具有性质,,与至少有一个是该数列中的一项,且,若是该数列中的一项,则,,易知不是该数列的项,.若是该数列中的一项,则或或,a、若同,b、若,则,与矛盾,c、,则,综上.故②正确.故选:.【题目点拨】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.6、B【解题分析】

根据偶函数性质与幂函数性质可得.【题目详解】偶函数在上是增函数,则它在上是减函数,所以.故选:B.【题目点拨】本题考查幂函数的性质,考查偶函数性质,属于基础题.7、C【解题分析】

根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【题目详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【题目点拨】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.8、A【解题分析】

利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【题目详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【题目点拨】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.9、A【解题分析】

直接利用三角函数的诱导公式化简求值.【题目详解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故选A.【题目点拨】本题考查利用诱导公式化简求值,是基础的计算题.10、A【解题分析】

根据终边相同的角的的概念可得正确的选项.【题目详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【题目点拨】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】

因为1,,,,4成等比数列,根据等比数列的性质,可得,再利用,确定取值.【题目详解】因为1,,,,4成等比数列,所以,所以或,又因为,所以.故答案为:2【题目点拨】本题主要考查等比数列的性质,还考查运算求解的能力,属于基础题.12、【解题分析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【题目点拨】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.13、【解题分析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.14、【解题分析】

利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【题目详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【题目点拨】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.15、【解题分析】

由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【题目详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【题目点拨】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.16、8【解题分析】

画出满足约束条件的可行域,利用目标函数的几何意义求解最大值即可.【题目详解】实数,满足条件的可行域如下图所示:将目标函数变形为:,则要求的最大值,即使直线的截距最大,由图可知,直线过点时截距最大,,故答案为:8.【题目点拨】本题考查线性规划的简单应用,解题关键是明确目标函数的几何意义.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)的最大值为1999,此时公差为.【解题分析】

(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【题目详解】(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,∴q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,d≤2;当n=2,3,…,k﹣1时,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为.【题目点拨】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.18、(1);(2)114【解题分析】

(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.【题目详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,,,则;(2)满足不等式|﹣63|<62,.,,且,,得随着的增大而增大,得,又且对于任意正整数都成立,得,,且是正整数,满足的个数为:124﹣11+1=114个,即有114个,所以有114个数列.【题目点拨】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题.19、(1)(2)【解题分析】试题分析:(1)根据题知,由向量的数量积公式进行运算即可,注意,在去括号的向量运算过程中可采用多项式的运算方法;(2)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论