版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市开州区镇东初级中学2023年八上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一次函数的图象经过()A.第、、象限 B.第、、象限 C.第、、象限 D.第、、象限2.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形3.若关于的不等式的整数解共有个,则的取值范围是()A. B. C. D.4.若关于x的方程无解,则a的值是()A.1 B.2 C.-1或2 D.1或25.若分式有意义,则的取值范围是()A. B. C. D.且6.解分式方程时,去分母后变形为A. B.C. D.7.在,,,,中,分式的个数是()A.2 B.3 C.4 D.58.下列分解因式正确的是()A. B.C. D.9.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<010.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为()A.1.6×10﹣9米 B.1.6×10﹣7米 C.1.6×10﹣8米 D.16×10﹣7米11.甲、乙两位运动员进行射击训练,他们射击的总次数相同,并且他们所中环数的平均数也相同,但乙的成绩比甲的成绩稳定,则他们两个射击成绩方差的大小关系是()A. B. C. D.不能确定12.等于()A. B. C. D.二、填空题(每题4分,共24分)13.如图,直线AB∥CD,直线EF分别与直线AB和直线CD交于点E和F,点P是射线EA上的一个动点(P不与E重合)把△EPF沿PF折叠,顶点E落在点Q处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE的度数是_______.14.如图,∠MON=30°,点A1、A2、A3、……在射线ON上,点B1、B2、B3、……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4,……均为等边三角形,若OA1=1,则△A2019B2019A2020的边长为__________15.等腰三角形的两边长分别为2和7,则它的周长是_____.16.已知a+b=5,ab=3,=_____.17.计算:____________.18.已知直线AB的解析式为:y=kx+m,且经过点A(a,a),B(b,8b)(a>0,b>0).当是整数时,满足条件的整数k的值为.三、解答题(共78分)19.(8分)阅读题:在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了。有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,当时,,此时可以得到数字密码1.(1)根据上述方法,当时,对于多项式分解因式后可以形成哪些数字密码?(写出三个).(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为,求出一个由多项式分解因式后得到的密码(只需一个即可).(3)若多项式因式分解后,利用本题的方法,当时可以得到其中一个密码为2434,求的值.20.(8分)如图,在平面直角坐标系xOy中,已知△OAB的两个顶点的坐标分别是A(3,0),B(2,3).(1)画出△OAB关于y轴对称的△OA1B1,其中点A,B的对应点分别为A1,B1,并直接写出点A1,B1的坐标;(2)点C为y轴上一动点,连接A1C,B1C,求A1C+B1C的最小值并求出此时点C的坐标.21.(8分)如图,四边形中,.动点从点出发,以的速度向点移动,设移动的时间为秒.(1)当为何值时,点在线段的垂直平分线上?(2)在(1)的条件下,判断与的位置关系,并说明理由.22.(10分)请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为;(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P);(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论.23.(10分)如图,三个顶点坐标分别是(1)请画出关于轴对称的;(2)直接写出的坐标;(3)求出的面积.24.(10分)如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:(2)过点F作于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM25.(12分)解方程组或计算:(1)解二元一次方程组:;(2)计算:()2﹣(﹣1)(+1).26.如图所示,在中,和是高,它们相交于点,且.(1)求证:.(2)求证:.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据一次函数解析式系数的正负性判断函数图象经过的象限.【详解】解:一次函数中.,,此函数的图象经过一、二、三象限.故选A.【点睛】本题考查一次函数图象经过的象限,解题的关键是掌握一次函数图象的性质.2、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.3、D【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【详解】解不等式,由①式得,,由②式得,即故的取值范围是,故选D.【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.4、A【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得a的值.【详解】解:方程两边同乘,得,
,
∵关于的方程无解,
∴,,
解得:,,
把代入,得:,
解得:,综上,,
故答案为:1.【点睛】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.5、D【解析】∵分式有意义,∴,∴且,解得且.故选D.6、D【解析】试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.7、A【解析】根据分式的定义即可得出答案.【详解】根据分式的定义可知是分式的为:、共2个,故答案选择A.【点睛】本题考查的主要是分式的定义:①形如的式子,A、B都是整式,且B中含有字母.8、C【解析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.=(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9、A【解析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【点睛】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.10、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1纳米=10﹣9米,∴16纳米表示为:16×10﹣9米=1.6×10﹣8米.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11、B【分析】方差越小,表示这个样本或总体的波动越小,即越稳定.根据方差的意义判断.【详解】根据方差的意义知,射击成绩比较稳定,则方差较小,∵乙的成绩比甲的成绩稳定,∴.故选B.【点睛】此题考查方差,解题关键在于掌握方差越小,越稳定.12、D【解析】根据负整数指数幂的运算法则计算即可.【详解】解:.故选:D.【点睛】本题考查了负整数指数幂的运算法则,属于应知应会题型,熟知负整数指数幂的运算法则是解题关键.二、填空题(每题4分,共24分)13、50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ=∠EFC=×120°=20°,∴∠PFE=∠EFQ=(∠EFC﹣∠CFQ)=(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14、2【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…则△An-1BnAn+1的边长为2n-1,即可得出答案.【详解】∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△An-1BnAn+1的边长为2n-1.则△A2019B2019A2020的边长为2.
故答案是2.【点睛】本题考查等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15、16【分析】根据2和7可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【详解】当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为16【点睛】本题主要考查了三角形三边关系,也考查了等腰三角形的性质.关键是根据2,7,分别作为腰,由三边关系定理,分类讨论.16、.【解析】将a+b=5、ab=3代入原式=,计算可得.【详解】当a+b=5、ab=3时,原式====.故答案为.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.17、【分析】根据商的乘方,分子、分母分别平方,然后在分别用积的乘方,幂的乘方法则来计算即可得结果.【详解】,故答案为:【点睛】利用商的乘方法则,在用积的乘方计算时,要注意负数的平方是正数,积的乘方法则计算,以及幂的乘方计算时注意指数相乘的关系.18、9或1.【详解】把A(a,a),B(b,8b)代入y=kx+m得:,解得:k==+1=+1,∵是整数,k是整数,∴1﹣=或,解得:b=2a或b=8a,则k=1或k=9,故答案为9或1.三、解答题(共78分)19、(1)211428,212814或142128;(2)48100;(3)【分析】(1)将分解因式,再进行组合即可;(2)将分解因式,再根据已知得到即可;(3)根据密码是2434,得到饮水分解后的结果,多项式相乘再使各项系数相等即可解题.【详解】解:(1),当时,,可得数字密码是211428;也可以是212814;142128;(写出一个即给分)(2)由题意得:,解得,而,所以可得数字密码为48100;(3)∵密码为2434,∴当时,∴,即:,∴,解得.【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题;考查了用类比的方法解决问题.20、(1)见解析,点A1(﹣3,0),点B1(﹣2,3);(2)最小值等于,此时点C的坐标为(0,).【分析】(1)根据轴对称图形的性质作出△OA1B1,并写出A1的坐标和B1的坐标即可;(2)设直线A1B的解析式为y=kx+b,代入A1(﹣3,0),B(2,3),解得直线A1B的解析式,令x=0即可得出点C的坐标;【详解】(1)如图所示,△OA1B1即为所求,点A1的坐标为(﹣3,0),点B1的坐标为(﹣2,3);(2)如图所示,A1C+B1C的最小值等于A1B=,设直线A1B的解析式为y=kx+b,由A1(﹣3,0),B(2,3),可得,解得,∴直线A1B的解析式为y=x+,令x=0,则y=,此时点C的坐标为(0,).【点睛】本题考查了作轴对称图形以及求直线的解析式的问题,掌握轴对称图形的性质以及作法、直线解析式的解法是解题的关键.21、(1)当x=5时,点E在线段CD的垂直平分线上;(2)DE与CE的位置关系是DE⊥CE,理由见解析【分析】(1)根据垂直平分线的性质得出DE=CE,利用勾股定理得出,然后建立方程求解即可(2)根据第(1)问的结果,易证△ADE≌△BEC,根据全等三角形的性质有∠ADE=∠CEB,再通过等量代换可得∠AED+∠CEB=90°,进而求出∠DEC=90°,则可说明DE⊥CE.【详解】解:(1)∵点E在线段CD的垂直平分线上,∴DE=CE,∵∠A=∠B=90°解得∴当x=5时,点E在线段CD的垂直平分线上(2)DE与CE的位置关系是DE⊥CE;理由是:当x=5时,AE=2×5cm=10cm=BC,∵AB=25cm,DA=15cm,CB=10cm,∴BE=AD=15cm,在△ADE和△BEC中,∴△ADE≌△BEC(SAS),∴∠ADE=∠CEB,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠AED+∠CEB=90°,∴∠DEC=180°-(∠AED+∠CEB)=90°,∴DE⊥CE.【点睛】本题主要考查勾股定理和全等三角形的判定及性质,掌握勾股定理和全等三角形的判定及性质是解题的关键.22、(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.【分析】(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;
(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;
(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;
(3)解:如图3,
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°-∠2,∠PCD=180°-∠3,
∵∠P+(180°-∠1)=∠D+(180°-∠3),
∠P+∠1=∠B+∠4,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(36°+16°)=26°;
故答案为:26°;
(4)由题意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案为:∠P=;(5)由题意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案为:∠P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.23、(1)见解析;(2);(3)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,依次连接即可.
(2)根据点的位置写出坐标即可.
(3)利用分割法求三角形的面积即可.【详解】(1)如图,即为所求;(2);(3)的面积为.【点睛】本题考查作图-对称变换,三角形的面积等知识,根据对称变换得出对应点位置是解题关键.24、(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形的性质证得BG=DE,利用SAS可证明≌,再利用全等的性质即可得到结论;(2)过M作MK⊥BC于K,延长EF交AB于T,根据ASA可证明≌,得到AE=MH,再利用AAS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 14233.2-2025医用输液、输血、注射器具检验方法第2部分:生物学试验方法
- 深度解析(2026)《GBT 33490-2025展览展示工程服务基本要求》
- 深度解析(2026)《GBT 33369-2016钎焊用铝合金复合板、带、箔材》
- 服务合作协议合同
- 医疗数据安全治理:多主体权责分配模型
- 医疗数据安全标准对接:技术架构与实现路径
- 胸部淋巴结解剖课件
- 胸腔积液检验课件
- 医疗数据安全合规性风险排查清单
- 医疗数据安全共识算法比较与选型指南
- 2026(苏教版)数学五上期末复习大全(知识梳理+易错题+压轴题+模拟卷)
- 垃圾中转站机械设备日常维护操作指南
- 单证主管助理客户服务能力提升方案
- 汽车行业可信数据空间方案
- 畜牧业机械化培训课件
- 工程质量管理工作制度
- 云南交投集团笔试试题及答案
- 东华大学《大学物理A》2025 - 2026学年第一学期期末试卷(A卷)
- 酒店(旅馆)设计案例分析
- 软启动培训课件
- 重庆科技大学《高等数学I》2025 - 2026学年第一学期期末试卷
评论
0/150
提交评论