版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴县2024届八年级数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列各点在正比例函数的图象上的是()A. B. C. D.2.为了应用乘法公式计算(x-2y+1)(x+2y-1),下列变形中正确的是()A.[x-(2y+1)]2 B.[x-(2y-1)][x+(2y-1)]C.[(x-2y)+1][(x-2y)-1] D.[x+(2y-1)]23.下列命题中是真命题的是()A.三角形的任意两边之和小于第三边B.三角形的一个外角等于任意两个内角的和C.两直线平行,同旁内角相等D.平行于同一条直线的两条直线平行4.下列计算中正确的是().A. B. C. D.5.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10-5C.0.75×10-4D.75×10-66.2014年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:若每月每户居民用水不超过4m3,则按每立方米2元计算;若每月每户居民用水超过4m3,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民用水xm3,水费为y元,则y与x的函数关系式用图象表示正确的是()A. B. C. D.7.若将实数,,,这四个数分别表示在数轴上,则其中可能被如图所示的墨迹覆盖的数是().A. B. C. D.8.是()A.分数 B.整数 C.有理数 D.无理数9.下列说法错误的是()A.角平分线上的点到角两边的距离相等B.直角三角形的两个锐角互余C.等腰三角形的角平分线、中线、高线互相重合D.一个角等于60°的等腰三角形是等边三角形10.如图,在中,,点在上,连接,将沿直线翻折后,点恰好落在边的点处若,,则点到的距离是()A. B. C. D.二、填空题(每小题3分,共24分)11.若△ABC的三边的长AB=5,BC=2a+1,AC=3a﹣1,则a的取值范围为_____.12.分式的最简公分母是_______.13.若,为连续整数,且,则__________.14.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.15.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.
16.当时,分式有意义.17.用科学记数法表示:0.00000036=18.如图,在中,是边的中点,垂直于点,则_______________度.三、解答题(共66分)19.(10分)在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,则∠ABD的度数为_____,∠BDF的度数为______;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN,若BN=DN,∠ACB=.(I)用表示∠BAD;(II)①求证:∠ABN=30°;②直接写出的度数以及△BMN的形状.20.(6分)定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为1,0的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为p,q,且BOD150,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为,且DOB30,求OM的长.21.(6分)如图1是3×3的正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,(要求:绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图2中的两幅图就视为同一种图案),请在图3中的四幅图中完成你的设计.22.(8分)课堂上,老师出了一道题:比较与的大小.小明的解法如下:解:,因为,所以,所以,所以,所以,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“”“=”或“”):若,则;若,则;若,则.(2)利用上述方法比较实数与的大小.23.(8分)(1)计算:①;②(2)因式分解:①②(3)解方程:①②24.(8分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.(1)求点D的坐标;(2)求直线的解析表达式;(3)求△ADC的面积;(4)在直线上存在一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.25.(10分)如图,四边形ABCD中,,对角线AC,BD相交于点O,,垂足分别是E、F,求证:.26.(10分)如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.
参考答案一、选择题(每小题3分,共30分)1、A【分析】分别把各点代入正比例函数的解析式进行检验即可.【详解】A、∵当x=−1时,y=2,∴此点在函数图象上,故本选项正确;B、∵当x=1时,y=−2≠2,∴此点不在函数图象上,故本选项错误;C、∵当x=0.5时,y=−1≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=−2时,y=4≠1,∴此点不在函数图象上,故本选项错误.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、B【解析】分析:根据平方差公式的特点即可得出答案.详解:(x﹣2y+1)(x+2y﹣1)=[x﹣(2y﹣1)][x+(2y﹣1)]故选B.点睛:本题考查了平方差公式的应用,主要考查学生的理解能力.3、D【分析】根据三角形的三边关系、三角形的外角性质、平行线的性质、平行公理判断即可.【详解】解:A、三角形的任意两边之和大于第三边,本选项说法是假命题;B、三角形的一个外角等于与它不相邻的两个内角的和,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、平行于同一条直线的两条直线平行,本选项说法是真命题;故选:D.【点睛】本题主要考查真假命题,掌握三角形的三边关系、三角形的外角性质、平行线的性质、平行公理是解题的关键.4、D【分析】根据合并同类项,可判断A;根据同底数幂的除法,可判断B;根据同底数幂的乘法,可判断C;根据积的乘方,可判断D.【详解】A、不是同类项不能合并,故A错误;
B、同底数幂的除法底数不变指数相减,故B错误;
C、同底数幂的乘法底数不变指数相加,故C错误;
D、积的乘方等于乘方的积,故D正确;
故选:D.【点睛】此题考查积的乘方,合并同类项,同底数幂的除法,同底数幂的乘法,解题关键在于掌握积的乘方等于每一个因式分别乘方,再把所得的幂相乘.5、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000075=7.5×10-5.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、C【详解】由题意知,y与x的函数关系为分段函数.故选C.考点:1.一次函数的应用;2.一次函数的图象.7、B【分析】根据算术平方根的概念分别估算各个实数的大小,根据题意判断.【详解】<0,2<<3,3<<4,3<<4,∴可能被如图所示的墨迹覆盖的数是,故选:B.【点睛】本题考查的是实数和数轴,算术平方根,正确估算算术平方根的大小是解题的关键.8、D【解析】先化简,进而判断即可.【详解】,故此数为无理数,故选:D.【点睛】本题主要考查无理数的定义和二次根式的化简,正确将二次根式化简得出是解题关键.9、C【解析】根据角平分线的判定定理、直角三角形的性质、等腰三角形的性质、等边三角形的判定定理判断即可.【详解】A、角平分线上的点到角的两边距离相等,故本选项正确;B.直角三角形的两个锐角互余,故本选项正确;C、应该是:等腰三角形底边上的角平分线、中线、高线互相重合,故此选项错误;D、根据等边三角形的判定定理“有一内角为60°的等腰三角形是等边三角形”知本选项正确.
故选:C.【点睛】本题考查角平分线的性质,直角三角形的性质,等腰三角形的性质,等边三角形的判定,注意,有一个角是60°的“等腰三角形”是等边三角形,而不是有一个角是60°的“三角形”是等边三角形.10、A【分析】过点D作DF⊥BC于F,DG⊥AC于G,根据折叠的性质可得CB=CE,∠BCD=∠ACD,然后根据角平分线的性质可得DF=DG,然后结合已知条件和三角形面积公式即可求出AC和CB,然后利用S△BCD+S△ACD=列出方程即可求出DG.【详解】解:过点D作DF⊥BC于F,DG⊥AC于G由折叠的性质可得:CB=CE,∠BCD=∠ACD∴CD平分∠BCA∴DF=DG∵∴CE:AC=5:8∴CB:AC=5:8即CB=∵∴解得:AC=8∴CB=∵S△BCD+S△ACD=∴即解得:DG=,即点到的距离是故选A.【点睛】此题考查的是折叠的性质、角平分线的性质和三角形的面积公式,掌握折叠的性质、角平分线的性质定理和三角形的面积公式是解决此题的关键.二、填空题(每小题3分,共24分)11、2<a<2.【分析】根据三角形的三边关系,可得①,②;分别解不等式组即可求解.
可得:2<a<2.【详解】解:∵△ABC的三边的长AB=5,BC=2a+2,AC=3a﹣2,∴①,解得2<a<2;②,解得a>2,则2a+2<3a﹣2.∴2<a<2.故答案为:2<a<2.【点睛】须牢记三角形的三边关系为:两边之和大于第三边,两边之差小于第三边.12、【分析】根据题意,把分母进行通分,即可得到最简公分母.【详解】解:分式经过通分,得到;∴最简公分母是;故答案为:.【点睛】本题考查了最简公分母的定义,解题的关键是掌握公分母的定义,正确的进行通分.13、7【分析】先根据无理数的估算求出a和b的值,然后代入a+b计算即可.【详解】解:∵,∴,∴,∴.故答案为:7.【点睛】此题主要考查了估算无理数的大小,运用“夹逼法”估算无理数的整数部分是解答本题的关键.14、1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积.【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S△ACF=×1×1=1(cm1).故答案为1.【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键.15、100°【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO交AC于E,∵∠A=50°,∠ABO=20°,
∴∠1=∠A+∠ABO=50°+20°=70°,
∵∠ACO=30°,
∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.16、【分析】由分式有意义的条件:分母不为0,可得答案.【详解】解:由有意义得:故答案为:【点睛】本题考查的是分式有意义的条件,分母不为0,掌握知识点是解题的关键.17、3.6×10﹣1.【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.00000036=3.6×10﹣1,考点:科学记数法—表示较小的数18、65【分析】根据等腰三角形的性质及三线合一的性质可知的度数,再由三角形内角和定理即可得到的度数.【详解】∵∴是等腰三角形∵D是边的中点,∴AD平分∴∵⊥∴∴,故答案为:65.【点睛】本题主要考查了等腰三角形的性质及三线合一的性质,熟练掌握相关性质知识是解决本题的关键.三、解答题(共66分)19、(1)10°,20°;(2)(Ⅰ);(II)①证明见解析;②=40°,△BMN等腰三角形.【分析】(1)由等边三角形的性质可得AD=AC,∠CAD=60°,利用等量代换可得AD=AB,根据等腰三角形的性质即可求出∠ABD的度数,由等腰三角形“三线合一”的性质可得∠ADE=30°,进而可求出∠BDF的度数;(2)(Ⅰ)根据等腰三角形的性质可用表示出∠BAC,由∠CAD=60°即可表示出∠BAD;(Ⅱ)①如图,连接AN,由角平分线的定义可得∠CAN=,根据等腰三角形“三线合一”的性质可得DN是AC的垂直平分线,可得AN=CN,∠CAN=∠CAN,即可求出∠DAN=+60°,由(Ⅰ)可知∠BAD=240°-2,由△ABN≌△AND可得∠BAN=∠DAN,可得∠BAN=120°+,列方程即可求出的值,利用外角性质可求出∠ANM的度数,根据三角形内角和可求出∠AMN的度数,利用外角性质可求出∠MNB的度数,可得∠BMN=∠ABN,可证明△BMN是等腰三角形.【详解】(1)∵△ACD是等边三角形,∴AD=AC=CD,∠CAD=∠ADC=60°,∵AB=AC,∴AD=AB,∵∠BAC=100°,∴∠BAD=∠BAC+∠CAD=160°,∴∠ABD=∠ADB=(180°-∠BAD)=10°,∵点E为AC中点,∴∠ADE=∠CDE=30°,∴∠BDF=∠ADE-∠ADB=20°,故答案为:10°,20°(2)(Ⅰ)∵AB=AC,∠ACB=,∴∠ABC=∠ACB=,∴,∵△ACD为等边三角形,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=240°+.(II)①如图,连接,∵△ACD为等边三角形,∴,在△ABN和△AND中,,∴△ABN≌△AND,∴∠ABN=∠ADN,∵点E的中点,∴DF⊥AC,ED平分∠ADC,∴∠ADE=30°,∴∠ABN=∠ADE=30°.②∵CM平分∠ACB,∠ACB=,∴∠CAM=∠BCM=,∵点E是AC的中点,△ACD是等边三角形,∴DN是AC的垂直平分线,∴AN=CN,∴∠CAN=∠ACM=,∴∠DAN=∠CAD+∠CAN=60°+,∵△ABN≌△AND,∴∠BAN=∠DAN=60°+,∴∠BAN=2∠BAN=120°+,由(Ⅰ)得:∠BAD=240°-2,∴120°+=240°-2,解得:=40°,∴∠BAN=60°+=80°,∠ANM=∠NAC+∠NCA==40°,∴∠AMC=180°-∠BAN-∠ANM=60°,∵∠ABN=30°,∴∠MNB=∠AMC-∠ABN=30°,∴∠ABN=∠MNB,∴MB=MN,∴是等腰三角形.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质及等腰三角形的判定与性质,等边三角形的三条边都相等,每个内角都是60°;等腰三角形的两个底角相等,顶角的角平分线、底边的高、底边的中线“三线合一”;熟练掌握相关性质及判定定理是解题关键.20、(1)2;(2);(3)【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M作MN⊥CD于N,根据已知得出,,求出∠MON=60°,根据含30度直角三角形的性质和勾股定理求出即可解决问题;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点,首先证明,求出,,然后过作,交延长线于,根据含30度直角三角形的性质求出,,再利用勾股定理求出EF即可.【详解】解:(1)由题意可知,在直线CD上,且在点O的两侧各有一个,共2个,故答案为:2;(2)过作于,∵直线于,,∴,∵,,∴,∴,∴;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点.∴,,∴,,,∴,∴△OEF是等边三角形,∴,∵,,∴,,∵,∴,过作,交延长线于,∴,在中,,则,在中,,,∴,∴.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.21、见解析【分析】根据轴对称的性质画出图形即可.【详解】解:如图所示.【点睛】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.22、(1);=;;(2).【解析】(1)根据不等式和方程移项可得结论;(2)同理,利用作差法可比较大小.【详解】(1)(1)①若a-b>0,则a>b;②若a-b=0,则a=b;③若a-b<0,则a<b;(2).因为,所以,即.【点睛】本题考查了实数大小的比较,根据所给的材料,运用类比的方法解决问题.23、(1)①5;②3xy+y2;(2)①ab(a+1)(a-1);②-y(3x-y)2;(2)①x=9;②x=-【分析】(1)①先计算负整数指数、乘方和零指数幂,然后按实数的计算法则加减即可;②先根据多项式乘以多项式法则和平方差公式进行计算,再合并同类项即可.(2)①首先找出公因式,进而利用平方差公式分解因式即可,
②找出公因式,进而利用完全平方公式分解因式即可;
(3)①方程两边同时乘以x(x−3),然后求解即可,注意,最后需要检验;
②方程两边同时乘以(2x−5)(2x+5),然后求解即可,注意,最后需要检验;【详解】解:(1)①原式=4-8×0.125+1+1=4-1+1+1=5②原式=4x2+3xy-4x2+y2=3xy+y2(2)①=ab(a2-1)=ab(a+1)(a-1)②=-y(-6xy+9x2+y2)=-y(3x-y)2(3)①方程两边同乘x(x−3)得:2x=3x-9,解得:x=9,检验:当x=9时,x(x−3)≠0,∴x=9是原方程的解;②方程两边同乘(2x−5)(2x+5)得:2x(2x+5)-2(2x-5)=(2x−5)(2x+5)解得:x=-,检验:当x=-时,(2x−5)(2x+5)≠0,∴x=-是原方程的解.【点睛】本题考查实数的计算、因式分解和分式的加减,多项式乘以多项式法则,解分式方程,掌握运算顺序与运算法则和因式分解的方法是解题的关键.24、(1)D(1,0);(2);(3);(4)P1(8,6)或P2(0,-6).【分析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,根据△ADP的面积是△ADC面积的2倍,可得点P的坐标..【详解】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=-,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,
∴△ADC高就是点C到直线AD的距离的2倍,
即C纵坐标的绝对值=6,则P到AD距离=6,
∴点P纵坐标是±6,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年黎明职业大学高职单招职业适应性测试参考题库及答案详解
- 2026年商丘工学院高职单招职业适应性考试备考题库及答案详解
- 2026年厦门软件职业技术学院高职单招职业适应性考试备考试题及答案详解
- 工业安全考试题目及答案解析(2025版)
- 电工(高级)资格证考试考试押题密卷【必刷】附答案详解
- 贫穷阅读题目及答案
- 2025年台湾省金门县金门县保安员招聘考试试题题库附答案解析
- 2025年台湾省连江县连江县保安员招聘考试题库附答案解析
- 2026年石家庄工程职业学院高职单招职业适应性考试备考试题及答案详解
- 2026年石家庄理工职业学院单招职业技能笔试备考题库及答案详解
- 2026年黑龙江高职单招考试高考语文试卷试题(含答案)
- 全球隐球菌病指南(2024版):诊断与管理课件
- 担保取消协议书
- 2025国家统计局滨海新区调查队辅助调查员招聘3人备考笔试试题及答案解析
- 星罗棋布的港口课件
- 学堂在线 雨课堂 学堂云 新闻摄影 期末考试答案
- 职工食堂承包经营投标书-1
- 生命体征监测考核评分标准
- 第29课+中国特色社会主义进入新时代高一历史中外历史纲要上册
- 河北省2011中考数学试题及答案
- 体彩专管员考试题库
评论
0/150
提交评论