浙江省杭州下城区2023年九年级数学第一学期期末达标检测模拟试题含解析_第1页
浙江省杭州下城区2023年九年级数学第一学期期末达标检测模拟试题含解析_第2页
浙江省杭州下城区2023年九年级数学第一学期期末达标检测模拟试题含解析_第3页
浙江省杭州下城区2023年九年级数学第一学期期末达标检测模拟试题含解析_第4页
浙江省杭州下城区2023年九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州下城区2023年九年级数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.A B.B C.C D.D2.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.3.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④4.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.②③ B.②③④ C.②③⑤ D.②③④⑤5.如图,AD是⊙O的直径,以A为圆心,弦AB为半径画弧交⊙O于点C,连结BC交AD于点E,若DE=3,BC=8,则⊙O的半径长为()A. B.5 C. D.6.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B. C. D.17.某企业五月份的利润是25万元,预计七月份的利润将达到49万元.设平均月增长率为x,根据题意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=498.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为(

)A.80º B.60º C.40º D.50º9.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B. C. D.10.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.11.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠012.下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为,,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生二、填空题(每题4分,共24分)13.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.14.如图,在四边形ABCD中,AB=BD,∠BDA=45°,BC=2,若BD⊥CD于点D,则对角线AC的最大值为___.15.计算:=______.16.用配方法解一元二次方程,配方后的方程为,则n的值为______.17.若=2,则=_____.18.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.三、解答题(共78分)19.(8分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ=.(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.20.(8分)元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?21.(8分)如图,在中,,.用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;连接AO,求证:AO平分.22.(10分)如图,直线与双曲线在第一象限内交于两点,已知.求的值及直线的解析式;根据函数图象,直接写出不等式的解集.23.(10分)哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.24.(10分)如图,在东西方向的海面线上,有,两艘巡逻船和观测点(,,在直线上),两船同时收到渔船在海面停滞点发出的求救信号.测得渔船分别在巡逻船,北偏西和北偏东方向,巡逻船和渔船相距120海里,渔船在观测点北偏东方向.(说明:结果取整数.参考数据:,.)(1)求巡逻船与观测点间的距离;(2)已知观测点处45海里的范围内有暗礁.若巡逻船沿方向去营救渔船有没有触礁的危险?并说明理由.25.(12分)“道路千万条,安全第一条”,《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过”,一辆小汽车在一条城市街道上由西向东行驶,在据路边处有“车速检测仪”,测得该车从北偏西的点行驶到北偏西的点,所用时间为.(1)试求该车从点到点的平均速度(结果保留根号);(2)试说明该车是否超速.26.如图,正方形的边长为,,,,分别是,,,上的动点,且.(1)求证:四边形是正方形;(2)求四边形面积的最小值.

参考答案一、选择题(每题4分,共48分)1、C【解析】∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4−x),∴y=−x2+x.故选C.点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.2、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B.【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.3、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.4、D【分析】根据二次函数的图像与性质即可得出答案.【详解】由图像可知,a<0,b<0,故①错误;∵图像与x轴有两个交点∴,故②正确;当x=-3时,y=9a﹣3b+c,在x轴的上方∴y=9a﹣3b+c>0,故③正确;∵对称轴∴b-4a=0,故④正确;由图像可知,方程ax1+bx=0的两个根为x1=0,x1=﹣4,故⑤正确;故答案选择D.【点睛】本题考查的是二次函数的图像与性质,难度系数中等,解题关键是根据图像判断出a,b和c的值或者取值范围.5、A【分析】由作法得,根据圆周角定理得到∠ADB=∠ABE,再根据垂径定理的推论得到AD⊥BC,BE=CE=BC=4,于是可判断Rt△ABE∽Rt△BDE,然后利用相似比求出AE,从而得到圆的直径和半径.【详解】解:由作法得AC=AB,∴,∴∠ADB=∠ABE,∵AB为直径,∴AD⊥BC,∴BE=CE=BC=4,∠BEA=∠BED=90°,而∠BDE=∠ABE,∴Rt△ABE∽Rt△BDE,∴BE:DE=AE:BE,即4:3=AE:4,∴AE=,∴AD=AE+DE=+3=,∴⊙O的半径长为.故选:A.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.也考查了圆周角定理.6、B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为,故选B.【点睛】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,关键是找出卡片上所画的图形是中心对称图形的个数.7、B【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设利润的年平均增长率为x,然后根据已知条件可得出方程.【详解】解:依题意得七月份的利润为25(1+x)2,

∴25(1+x)2=1.

故选:B.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.8、C【解析】∵AB是⊙O的直径,∴∠C=90°,∵∠B=50°,∴∠A=90°-∠B=40°.故选C.9、D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长圆柱体的高=故答案为:D.【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.10、A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.11、D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.12、C【分析】全面调查与抽样调查的优缺点:全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【详解】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为,,说明甲的跳远成绩比乙稳定,B错误;C.一组数据,,,的众数是,中位数是,正确;D.可能性是的事件在一次试验中可能会发生,D错误.故选C.【点睛】本题考查了统计的应用,正确理解概率的意义是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与轴的另一个交点,从而可以得到一元二次方程的解,本题得以解决.【详解】由图象可得,

抛物线与x轴的一个交点为(1,0),对称轴是直线,

则抛物线与轴的另一个交点为(-3,0),

即当时,,此时方程的解是,

故答案为:.【点睛】本题考查了抛物线与轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.14、【分析】以BC为直角边,B为直角顶点作等腰直角三角形CBE(点E在BC下方),先证明,从而,求的最大值即可,以为直径作圆,当经过中点时,有最大值.【详解】以BC为直角边,B为直角顶点作等腰直角三角形CBE(点E在BC下方),即CB=BE,连接DE,∵,∴,∴,在和中,∴(),∴,若求AC的最大值,则求出的最大值即可,∵是定值,BD⊥CD,即,∴点D在以为直径的圆上运动,如上图所示,当点D在上方,经过中点时,有最大值,∴在Rt中,,,,∴,∴,∴对角线AC的最大值为:.故答案为:.【点睛】本题主要考查了等腰直角三角形的性质、全等三角形的性质、圆的知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.15、【分析】直接利用平面向量的加减运算法则求解即可求得,注意去括号时符号的变化.【详解】解:==故答案为:.【点睛】此题考查了平面向量的运算.此题难度不大,注意掌握运算法则是解此题的关键.16、7【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.17、1【分析】根据=1,得出x=1y,再代入要求的式子进行计算即可.【详解】∵=1,∴x=1y,∴;故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.18、(3,﹣10)【分析】首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.【详解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,∴此时点D的坐标为(3,﹣10).故答案为:(3,﹣10).【点睛】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键.三、解答题(共78分)19、(1)2;(2)见解析;(3)存在,QP的值为或8或.【分析】(1)利用勾股定理求出AC,设HQ=x,根据构建方程即可解决问题;(2)利用对折与平行线的性质证明四边相等即可解决问题;(3)设AE=EM=FM=AF=2m,则BM=3m,FB=5m,构建方程求出m的值,分两种情形分别求解即可解决问题.【详解】解:(1)如图1中,在△ABC中,∵∠ACB=90°,AB=20,BC=1,∴AC==16,设HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,由对折得:∵∴×16×1=9××x×x,∴x=2或﹣2(舍弃),∴HQ=2,故答案为2.(2)如图2中,由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四边形AEMF是菱形.(3)如图3中,设AE=EM=FM=AF=2m,则BM=3m,FB=5m,∴2m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM=∵QH=2,AQ=,∴QC=,设PQ=x,当=时,,∴解得:,当=时,,∴解得:x=8或,经检验:x=8或是分式方程的解,且符合题意,综上所述,满足条件长QP的值为或8或.【点睛】本题考查的是三角形相似的判定与性质,菱形的判定与性质,轴对称的性质,锐角三角函数的应用,掌握以上知识是解题的关键.20、40个【解析】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据全班交换小礼物共1560件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据题意得:x(x﹣1)=1560,解得:x1=40,x2=﹣39(不合题意,舍去).答:九(2)班有40个同学.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、(1)作图见解析;(2)证明见解析.【分析】(1)作线段AB的垂直平分线即可,线段AB的垂直平分与BC的交点即是圆心O;(2)由线段垂直平分线的性质可得∠OAB=∠B=30°,,从而可求∠CAO=30°,由角平分线的定义可知AO平分∠CAB.【详解】(1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°﹣∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.【点睛】本题考查了线段垂直平分线的作法及性质,等腰三角形的性质,角平分线的定义,熟练掌握线段垂直平分线的作法及性质是解答本题的关键.22、(1),;(2)或.【分析】⑴将点A(1,m)B(2,1)代入y2得出k2,m;再将A,B坐标代入y1中,求出即可;⑵直接根据函数图像写出答案即可.【详解】解:点在双曲线上,双曲线的解析式为在双曲线上,,直线过两点,,解得,直线的解析式为.根据函数图象可知,不等式的解集为或.【点睛】此题主要考查了一次函数与反比例函数交点问题,已知一个交点坐标先求出反比例函数的解析式是解题的关键.23、(1)60;(2)12,图见解析;(3)450【分析】(1)用滑冰的人数除以滑冰的比例,即可解得本次调查共抽取的学生人数.(2)用总人数减去其他各项的人数,即可得到最喜欢冰球项目的人数,补全条形统计图.(3)用总人数乘以最喜欢雪地足球的学生的比例,即可进行估算.【详解】解:(1)(人)∴本次抽样调查共抽取了60名学生(2)(人)∴本次调查中,最喜欢冰球项目的学生人数为12人.补全条形统计图(3)(人)∴由样本估计总体得该中学最喜欢雪地足球的学生约有450人.【点睛】本题考查了概率统计的问题,掌握条形图的性质、饼状图的性质是解题的关键.24、(1)76海里;(2)没有触礁的危险,理由见解析【分析】(1)作.根据直角三角形性质求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论