四川省武胜县2023-2024学年八年级数学第一学期期末复习检测模拟试题含解析_第1页
四川省武胜县2023-2024学年八年级数学第一学期期末复习检测模拟试题含解析_第2页
四川省武胜县2023-2024学年八年级数学第一学期期末复习检测模拟试题含解析_第3页
四川省武胜县2023-2024学年八年级数学第一学期期末复习检测模拟试题含解析_第4页
四川省武胜县2023-2024学年八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省武胜县2023-2024学年八年级数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是()A.①②③④ B.①②③ C.②④ D.①③2.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C. D.3.如图,直线,被直线所截,下列条件一定能判定直线的是()A. B. C. D.4.一汽艇保持发动机的功率不变,它在相距30千米的两码头之间流动的河水中往返一次(其中汽艇的速度大于河水流动的速度)所用的时间是t1,它在平静的河水中行驶60千米所用的时间是t2,则t1与t2的关系是()A.t1>t2 B.t1<t2 C.t1=t2 D.以上均有可能5.一次函数的图象经过点,则该函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.以下列各组数为边长,能组成直角三角形的是()A.5,6,7 B.4,5,6 C.6,7,8 D.5,12,137.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<08.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCDA.1个 B.2个 C.3个 D.4个9.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.210.如图①,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)二、填空题(每小题3分,共24分)11.若关于x的分式方程+2无解,则m的值为________.12.分解因式:ax2+2ax+a=____________.13.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②点D在线段AB的垂直平分线上;③S△DAC:S△ABC=1:2,正确的序号是_____.14.如图,在中,,,将其折叠,使点落在边上处,折痕为,则_______________.15.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.16.已知与是同类二次根式,写出一个满足条件的的正整数的值为__________.17.若x2-14x+m2是完全平方式,则m=______.18.已知数据,,,,0,其中正数出现的频率是_________.三、解答题(共66分)19.(10分)小明遇到这样一个问题如图1,△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD.20.(6分)如图,已知,在线段上,且,,,求证:.21.(6分)计算:(1)18x3yz•(﹣y2z)3÷x2y2z(2)÷22.(8分)如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=1.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.23.(8分)解方程:先化简后求值,其中满足24.(8分)列方程或方程组解应用题:小马自驾私家车从地到地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多元,求新购买的纯电动汽车每行驶1千米所需的电费.25.(10分)计算:14+(3.14)0+÷26.(10分)如图,在平面直角坐标系中:(1)请画出关于y轴对称的,并写、点的坐标;(2)直接写出的面积为_________________;(3)在x轴上找一点P,使的值最小,请标出点P的在坐标轴上的位置.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】解:∵BE是中线,

∴AE=CE,

∴S△ABE=S△BCE(等底等高的三角形的面积相等),故①正确;

∵CF是角平分线,

∴∠ACF=∠BCF,

∵AD为高,

∴∠ADC=90°,

∵∠BAC=90°,

∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,

∴∠ABC=∠CAD,

∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,

∴∠AFG=∠AGF,故②正确;

∵AD为高,

∴∠ADB=90°,

∵∠BAC=90°,

∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,

∴∠ACB=∠BAD,

∵CF是∠ACB的平分线,

∴∠ACB=2∠ACF,

∴∠BAD=2∠ACF,

即∠FAG=2∠ACF,故③正确;

根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;

故选B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.2、D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.3、C【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【详解】由∠1=∠3,不能判定直线a与b平行,故A不合题意;由∠3=∠4,不能判定直线a与b平行,故B不合题意;由∠3=∠2,得∠4=∠2,能判定直线a与b平行,故C符合题意;由,不能判定直线a与b平行,故D不合题意;故选:C.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.4、A【分析】设汽艇在静水中的速度为a千米/小时,水速为b千米/小时,根据题意列出算式,然后再比较大小即可.【详解】汽艇在静水中所用时间t1.汽艇在河水中所用时间t1.∵t1-t1=0,∴,∴t1>t1.故选A.【点睛】本题考查了分式的减法,根据题意列出汽艇在静水中和河水中所用时间的代数式是解题的关键.5、A【分析】根据题意,易得k﹤0,结合一次函数的性质,可得答案.【详解】解:∵一次函数的图象经过点,∴0=-k-2∴k=-2,∴k<0,b<0,

即函数图象经过第二,三,四象限,

故选A.【点睛】本题考查一次函数的性质,注意一次项系数与函数的增减性之间的关系.6、D【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为a2+b2=c2时,则三角形为直角三角形.【详解】解:A、52+62≠72,不符合勾股定理的逆定理,不能组成直角三角形,故错误;B、42+52≠62,不符合勾股定理的逆定理,不能组成直角三角形,故错误;C、62+72≠82,不符合勾股定理的逆定理,不能组成直角三角形,故错误;D、52+122=132,符合勾股定理的逆定理,能组成直角三角形,故正确.故选:D.【点睛】此题考查的知识点是勾股定理的逆定理:已知三角形的三边满足:a2+b2=c2时,则该三角形是直角三角形.解答时只需看两较小数的平方和是否等于最大数的平方.7、A【解析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【点睛】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.8、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(1)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(1)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(2)正确;∵OG=a,BC=a,∴OG≠BC,故(3)错误;∵S△AOE=a•a=a2,SABCD=3a•a=3a2,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(2)(4),共3个.故选:C.【点睛】本题考查矩形的性质,直角三角形斜边上的中线等于斜边的一半,等边三角形的判定,含30°角的直角三角形.熟练掌握相关定理,并能通过定理推出线段之间的数量关系是解决此题的关键.9、B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【详解】解:如图,

∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16

∴AB2=AC2=1,

∴正方形的面积=AB2=1.

故选:B.【点睛】本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、D【分析】根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是(2a+2b)(a-b)=(a+b)(a-b),

∴a2-b2=(a+b)(a-b).

故选D.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.详解:去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.故答案为1.点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.12、a(x+1)1【解析】ax1+1ax+a=a(x1+1x+1)=a(x+1)1.13、①②【解析】①据作图的过程可以判定AD是∠BAC的角平分线;②利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的垂直平分线上;③利用10度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】①根据作图的过程可知,AD是∠BAC的平分线.

故①正确;

②如图,∵在△ABC中,∠C=90°,∠B=10°,

∴∠CAB=60°.

又∵AD是∠BAC的平分线,

∴∠1=∠2=∠CAB=10°,∵∠1=∠B=10°,

∴AD=BD,∴△ABD为等腰三角形∴点D在AB的垂直平分线上.

故②正确;

③∵如图,在直角△ACD中,∠2=10°,

∴CD=AD,

∴BC=CD+BD=AD+AD=AD,∴S△DAC=AC•CD=AC•AD,

∴S△ABC=AC•BC=AC•AD=AC•AD,

∴S△DAC:S△ABC=AC•AD:AC•AD=1:1.

故③错误.

故答案为:①②.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图,解题关键是熟悉等腰三角形的判定与性质.14、【解析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠BA′D=∠DCA'+∠A'DC,又折叠前后图形的形状和大小不变,∠BA'D=∠A=65°,易求∠C=90°-∠A=25°,从而求出∠A′DC的度数.【详解】∵Rt△ABC中,∠ABC=90°,∠A=65°,∴∠C=90°-65°=25°,∵将其折叠,使点A落在边CB上A′处,折痕为BD,则∠BA'D=∠A,∵∠BA'D是△A'CD的外角,∴∠A′DC=∠BA'D-∠C=65°-25°=40°.故答案:40°.【点睛】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.15、2:2【详解】解:∵小正方形与大正方形的面积之比为1:12,∴设大正方形的面积是12,∴c2=12,∴a2+b2=c2=12,∵直角三角形的面积是=2,又∵直角三角形的面积是ab=2,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=12+2×6=12+12=21,∴a+b=1.则a、b是方程x2﹣1x+6=0的两个根,故b=2,a=2,∴.故答案是:2:2.考点:勾股定理证明的应用16、22【分析】根据同类二次根式定义可得化为最简二次根式后被开方数为3,进而可得x的值.【详解】当时,,,和是同类二次根式故答案为:.【点睛】此题主要考查了同类二次根式,关键是掌握把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.17、【分析】根据完全平方公式的结构特点解答即可.【详解】解:∵x2-14x+m2是完全平方式∴x2-14x+m2=x2-2·x·(±1)+(±1)2,∴m=±1.故答案为:±1.【点睛】本题主要考查了完全平方式的结构特点,掌握在完全平方公式中确定平方项和乘积二倍项是解答本题的关键.18、0.4【分析】上面五个数中,共有2个正数,故可以求得正数出现的频率.【详解】解:∵共五个数中,共有2个正数,∴正数出现的频率为:2÷5=0.4故答案为:0.4【点睛】考查频率的计算.熟记公式是解决本题的关键.三、解答题(共66分)19、见解析【分析】方法1,利用等腰三角形的性质以及三角形内角和定理,即可得到∠ABC=2∠ACD.方法2,作BE⊥CD,垂足为点E.利用等腰三角形的性质以及同角的余角相等,即可得出∠ABC=2∠ACD.方法3,作CF⊥AB,垂足为点F.利用等腰三角形的性质以及三角形外角性质,即可得到∠ACF=2∠ACD,再根据同角的余角相等,即可得到∠B=∠ACF,进而得出∠B=2∠ACD.【详解】方法1:如图,∵∠ACB=90°,∴∠BCD=90°-∠ACD,又∵BC=BD,∴∠BCD=∠BDC,∴△BCD中,∠ABC=180°-∠BDC-∠BCD=180°-2∠BCD=180°-2(90°-∠ACD)=2∠ACD;方法2:如图,作BE⊥CD,垂足为点E.∵∠ACB=90°,∴∠ACD+∠BCE=∠CBE+∠BCE=90°,∴∠ACD=∠CBE,又∵BC=BD,BE⊥CD,∴∠ABC=2∠CBE,∴∠ABC=2∠ACD;方法3:如图,作CF⊥AB,垂足为点F.∵∠ACB=90°,∠BFC=90°,∴∠A+∠ABC=∠BCF+∠ABC=90°,∴∠A=∠BCF,∵BC=BD,∴∠BCD=∠BDC,即∠BCF+∠DCF=∠A+∠ACD,∴∠DCF=∠ACD,∴∠ACF=2∠ACD,又∵∠ABC+∠BCF=∠ACF+∠BCF=90°,∴∠ABC=∠ACF,∴∠ABC=2∠ACD.【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的综合运用,解题时注意:等腰三角形的两个底角相等.20、见解析【分析】证得AD=CB,由SAS证明△AED≌△CFB,由全等三角形的性质得出∠BDE=∠DBF,即可得出结论.【详解】∵AB=CD,∴AB+BD=CD+BD,即AD=CB,在△AED和△CFB中,,∴△AED≌△CFB(SAS),∴∠BDE=∠DBF,∴BF∥DE.【点睛】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质是解决问题的关键.21、﹣4xy5z3;【分析】(1)直接利用积的乘方运算法则化简,再利用整式的乘除运算法则计算得出答案;(2)直接利用分式的混合运算法则计算得出答案.【详解】解:(1)原式===﹣4xy5z3;(2)原式=====.【点睛】此题主要考查了整式以及分式的混合运算,解题关键是正确掌握整式以及分式的混合运算运算法则.22、(1)∠ADC是直角,理由详见解析;(2).【分析】(1)利用勾股定理的逆定理,证明△ADC是直角三角形,即可得出∠ADC是直角;(2)根据三角形的中线的定义以及直角三角形的性质解答即可.【详解】(1)∠ADC是直角,理由如下:∵DE是△ADC的高,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=12+22=20,同理:CD2=5,∴AD2+CD2=25,∵AC2=(1+1)2=25,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC是直角;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=5,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF=.【点睛】本题主要考查勾股定理的逆定理和直角三角形的性质定理,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.23、(1)无解;(1),-1【分析】(1)根据解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论