版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁市射洪县2023年数学九年级第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.﹣4ac>0 D.a+b+c<02.如图,线段,点是线段的黄金分割点(),点是线段的黄金分割点(),点是线段的黄金分割点(),..,依此类推,则线段的长度是()A. B. C. D.3.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定4.抛物线y=4x2﹣3的顶点坐标是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)5.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.=465 B.=465 C.x(x﹣1)=465 D.x(x+1)=4656.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.7.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个 B.4个 C.5个 D.6个8.下列事件中是不可能事件的是()A.三角形内角和小于180° B.两实数之和为正C.买体育彩票中奖 D.抛一枚硬币2次都正面朝上9.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是()A. B. C.6 D.1010.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A.20米 B.30米 C.16米 D.15米11.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣112.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5 B.2 C.5或2 D.2或-1二、填空题(每题4分,共24分)13.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,若AP=1,那么线段PP′的长等于_____.15.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.16.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.17.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).18.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.三、解答题(共78分)19.(8分)受非洲猪瘟的影响,2019年的猪肉价格创历史新高,同时其他肉类的价格也有一定程度的上涨,某超市11月份的猪肉销量是羊肉销量的倍,且猪肉价格为每千克元羊肉价格为每千克元.(1)若该超市11月份猪肉、羊肉的总销售额不低于万元,则11月份的猪肉销量至少多少千克?(2)12月份香肠腊肉等传统美食的制作,使得市场的猪肉需求加大,12月份猪肉的销量比11月份增长了,由于国家对猪肉价格的调控,12月份的猪肉价格比11月份降低了,羊肉的销量是11月份猪肉销量的,且价格不变.最终,该超市12月份猪肉和.羊肉的销售额比11月份这两种肉的销售额增加了,求的值.20.(8分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A1B1C1;(2)求出点B旋转到点B1所经过的路径长.22.(10分)如图1,若二次函数的图像与轴交于点(-1,0)、,与轴交于点(0,4),连接、,且抛物线的对称轴为直线.(1)求二次函数的解析式;(2)若点是抛物线在一象限内上方一动点,且点在对称轴的右侧,连接、,是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,若点是抛物线上一动点,且满足,请直接写出点坐标.23.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.24.(10分)在中,.(1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:;(2)在图②中作,使它满足以下条件:①圆心在边上;②经过点;③与边相切.(尺规作图,只保留作图痕迹,不要求写出作法)25.(12分)如图,平面直角坐标系中,点、点在轴上(点在点的左侧),点在第一象限,满足为直角,且恰使∽△,抛物线经过、、三点.(1)求线段、的长;(2)求点的坐标及该抛物线的函数关系式;(3)在轴上是否存在点,使为等腰三角形?若存在,求出所有符合条件的点的坐标,若不存在,请说明理由.26.已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据抛物线的开口方向对A进行判断;根据抛物线的对称轴位置对B进行判断;根据抛物线与x轴的交点个数对C进行判断;根据自变量为1所对应的函数值为正数对D进行判断.A、抛物线开口向下,则a<0,所以A选项的关系式正确;B、抛物线的对称轴在y轴的右侧,a、b异号,则b>0,所以B选项的关系式正确;C、抛物线与x轴有2个交点,则△=b2﹣4ac>0,所以D选项的关系式正确;D、当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.考点:二次函数图象与系数的关系2、A【解析】根据黄金分割的定义得到,则,同理得到,,根据此规律得到.据此可得答案.【详解】解:线段,点是线段的黄金分割点,,,点是线段的黄金分割点,,,.所以线段的长度是,故选:.【点睛】本题考查了黄金分割:把线段分成两条线段和,且使是和的比例中项(即,叫做把线段黄金分割,点叫做线段的黄金分割点;其中,并且线段的黄金分割点有两个.3、A【分析】此题考查一元二次方程解的情况的判断.利用判别式来判断,当时,有两个不等的实根;当时,有两个相等的实根;当时,无实根;【详解】题中,所以次方程有两个不相等的实数根,故选A;4、B【分析】根据抛物线的顶点坐标为(0,b),可以直接写出该抛物线的顶点坐标,【详解】解:抛物线,该抛物线的顶点坐标为,故选:B.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5、A【解析】因为每位同学都要与除自己之外的(x﹣1)名同学握手一次,所以共握手x(x﹣1)次,由于每次握手都是两人,应该算一次,所以共握手x(x﹣1)÷2次,解此方程即可.【详解】解:设九年级(1)班有x名同学,根据题意列出的方程是=465,故选A.【点睛】本题主要考查一元二次方程在实际生活中的应用,明白两人握手应该只算一次并据此列出方程是解题的关键.6、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.7、B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】依题意可得所以需要4块;故选:B【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8、A【解析】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.故选A.9、C【分析】根据平行线分线段成比例可得,代入计算即可解答.【详解】解:∵l1∥l2∥l3,∴,即,解得:EF=1.故选:C.【点睛】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.10、B【分析】设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.【详解】设此时高为18米的旗杆的影长为xm,根据题意得:=,解得:x=30,∴此时高为18米的旗杆的影长为30m.故选:B.【点睛】本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.11、D【解析】∵在每个象限内的函数值y随x的增大而增大,∴m+1<0,∴m<-1.12、D【解析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.二、填空题(每题4分,共24分)13、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【点睛】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14、.【解析】解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴∠PAP′=∠BAC=90°,AP=AP′=1,∴PP′=.故答案为.15、【分析】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、55【解析】分析:∵∠ACB与∠AOB是所对的圆周角和圆心角,∠ACB=35º,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.17、②③【解析】试题分析:∠BAD与∠ABC不一定相等,选项①错误;∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP;所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.则正确的选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.18、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.三、解答题(共78分)19、(1)11月份猪肉销量至少为千克;(2)的值为【分析】(1)根据“总销售额不低于27.2万元”建立一元一次不等式,解不等式即可;(2)根据“12月份猪肉和羊肉的销售额比11月份这两种肉的销售额增加了”建立方程,解方程求解即可.【详解】解:(1)设11月份猪肉销量为千克,则:,解得:,答:11月份猪肉销量至少为千克;(2)设11月份羊肉销量为千克,猪肉销量为千克,则:,令,则,整理得:,解得:或,(舍)或,答:a的值为.【点睛】本题考查一元一次不等式及一元二次方程的实际应用,明确题意,正确找出数量关系是解题的关键.20、(1)每件童装应降价20元,(2)当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.【分析】(1)表示出销售数量,找到等量关系即可解题,(2)求出二次函数的表达式,化成顶点式即可解题.【详解】解:(1)设降了x元,则日销售量增加2x件,依题意得:(40-x)(20+2x)=1200,化简整理得:(x-10)(x-20)=0,解得:x=10或x=20,∵让顾客得到更多的实惠,∴每件童装应降价20元,(2)设销售利润为y,y=(40-x)(20+2x),y=-2(x-15)2+1250,∴当x=15时,函数有最大值,即童装一天的销售利润最多为1250元.【点睛】本题考查了二次函数的实际应用,中等难度,建立等量关系是解题关键.21、(1)见解析;(2)π.【解析】试题分析:(1)根据旋转的性质,可得答案;(2)根据线段旋转,可得圆弧,根据弧长公式,可得答案.解:(1)如图:;(2)如图2:,OB==2,点B旋转到点B1所经过的路径长=π.考点:作图-旋转变换.22、(1)(2)存在,(3)Q点的坐标为或【分析】(1)根据抛物线的对称性求出,再利用待定系数法求解即可;(2)连接OP,设,根据三角形面积的关系可得,即可求出P点的坐标;(3)分两种情况:①当Q在BC的上方时,过C作交AB于D;②当Q在BC的下方时,连接BQ交y轴于点E,根据全等三角形的性质联立方程求解即可.【详解】(1)∵抛物线的对称轴为直线解得;(2)连接OP设∵P在对称轴的右侧;(3)①当Q在BC的上方时,过C作交AB于D设CD的解析式为∴设BQ的解析式为解得②当Q在BC的下方时,连接BQ交y轴于点E设BE的解析式为解得综上所述,Q点的坐标为或.【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质、待定系数法、三角形面积公式、一次函数的性质、全等三角形的性质、平行线的性质、解方程组的方法是解题的关键.23、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为【分析】(1)由题意利用待定系数法,即可求出抛物线的解析式;(1)①由题意分别用含m的代数式表示出点P,E的纵坐标,再用含m的代数式表示出PE的长,运用函数的思想即可求出其最大值;②根据题意对以P、Q、C、D为顶点的四边形是平行四边形分三种情况进行讨论与分析求解.【详解】解:(1)将A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴抛物线的解析式为y=﹣x1+x+1.(1)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(1,0),∴0<m<1.∵点P的横坐标为m,∴点P的坐标为(m,﹣m1+m+1),点E的坐标为(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m+3=﹣(m﹣)1+.∵﹣1<0,0<<1,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(1)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.【点睛】本题考查二次函数图像的综合问题,解题关键是熟练掌握待定系数法求解析式、函数的思想求最大值以及平行四边形的性质及平移规律等知识.24、(1)见解析(2)见解析【解析】(1)连接,可证得,结合平行线的性质和圆的特性可求得,可得出结论;(2)由(1)可知切点是的角平分线和的交点,圆心在的垂直平分线上,由此即可作出.【详解】(1)证明:如图①,连接,∵是的切线,∴,∵,∴,∴,∵,∴,∴.(2)如图②所示为所求.①①作平分线交于点,②作的垂直平分线交于,以为半径作圆,即为所求.证明:∵在的垂直平分线上,∴,∴,又∵平分,∴,∴,∴,∵,∴,∴与边相切.【点睛】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,25、(1)OB=6,=;(2)的坐标为;;(3)存在,,,,【分析】(1)根据题意先确定OA,OB的长,再根据△OCA∽△OBC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年土木工程勘察的区域性分析
- 2026年电气控制系统的网络通信技术
- 2026春招:新媒体运营真题及答案
- 贺年卡课件教学课件
- 贷款政策讲解课件
- 货运企业组织安全培训方案课件
- 儿科常见病远程诊疗平台
- 医疗服务流程优化:提高效率
- 心肺复苏护理操作标准化
- 专科护理技术规范与操作讲解
- 《粤港澳大湾区发展规划纲要》(双语全文)
- 工程质量保证书范本保证书
- 14J936《变形缝建筑构造》
- 鲁班锁鲁班球课件
- 新概念英语第二册阶段一练习册
- 建设工程施工内部承包协议
- 【角色游戏对对幼儿社会性发展影响及促进对策7900字(论文)】
- 宫内节育器放置术
- 新制定《无障碍环境建设法》主题PPT
- 期末复习主题班会
- 道路交通基础设施韧性提升
评论
0/150
提交评论