上海市静安区、青浦区2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第1页
上海市静安区、青浦区2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第2页
上海市静安区、青浦区2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第3页
上海市静安区、青浦区2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第4页
上海市静安区、青浦区2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市静安区、青浦区2023-2024学年高一数学第一学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在同一直角坐标系中,函数和(且)的图像可能是()A. B.C. D.2.若函数(,且)在区间上单调递增,则A., B.,C., D.,3.“当时,幂函数为减函数”是“或2”的()条件A.既不充分也不必要 B.必要不充分C.充分不必要 D.充要4.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.若,则下列关系式一定成立的是()A. B.C. D.6.若函数的图象如图所示,则下列函数与其图象相符的是A. B.C. D.7.设,,,则,,三者的大小关系是()A. B.C. D.8.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分且不必要条件 D.既不充分也不必要条件9.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.210.设函数与的图像的交点为,则所在的区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数零点的个数为______.12.定义在上的函数则的值为______13.若函数是定义在上的严格增函数,且对一切x,满足,则不等式的解集为___________.14.已知,且,若不等式恒成立,则实数的最大值是__________.15.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______16.函数,其中,,的图象如图所示,求的解析式____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求关于的不等式的解集;(2)若是偶函数,且,,,求的取值范围.18.已知(1)若,求的值;(2)若,且,求实数的值19.直线与直线平行,且与坐标轴构成的三角形面积是24,求直线的方程.20.如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.(1)求证:平面;(2)求三棱锥的体积.21.已知函数(1)求的图象的对称轴的方程;(2)若关于的方程在上有两个不同的实数根,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用函数的奇偶性及对数函数的图象的性质可得.【详解】由函数,可知函数为偶函数,函数图象关于轴对称,可排除选项AC,又的图象过点,可排除选项D.故选:B.2、B【解析】函数在区间上单调递增,在区间内不等于,故当时,函数才能递增故选3、C【解析】根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可.【详解】当时,幂函数为减函数,所以有,所以幂函数为减函数”是“或2”的充分不必要条件,故选:C4、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.5、A【解析】判断函数的奇偶性以及单调性,由此可判断函数值的大小,即得答案.【详解】由可知:,为偶函数,又,知在上单调递减,在上单调递增,故,故选:A.6、B【解析】由函数的图象可知,函数,则下图中对于选项A,是减函数,所以A错误;对于选项B,的图象是正确的;对C,是减函数,故C错;对D,函数是减函数,故D错误。故选B7、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D8、A【解析】解指数不等式和对数不等式,求出两个命题的等价命题,进而根据充要条件的定义,可得答案【详解】“”“”,“”“”,“”是“”的充分而不必要条件,故“”是“”的的充分而不必要条件,故选:9、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力10、B【解析】根据零点所在区间的端点值的乘积小于零可得答案.【详解】函数与的图象的交点为,可得设,则是的零点,由,,∴,∴所在的区间是(1,2).故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【点睛】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.12、【解析】∵定义在上的函数∴故答案为点睛::(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围13、【解析】根据题意,将问题转化为,,再根据单调性解不等式即可得答案.【详解】解:因为函数对一切x,满足,所以,,令,则,即,所以等价于,因为函数是定义在上的严格增函数,所以,解得所以不等式的解集为故答案为:14、9【解析】利用求的最小值即可.【详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.15、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.16、【解析】首先根据函数的最高点与最低点求出A,b,然后由图像求出函数周期从而计算出,再由函数过点求出.【详解】,,,解得,则,因为函数过点,所以,,解得因为,所以,.故答案为:【点睛】本题考查由图像确定正弦型函数的解析式,第一步通过图像的最值确定A,b的值,第二步通过周期确定的值,第三步通过最值点或者非平衡位置的点以及三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时,;当时,;当时,(2)【解析】(1)分类讨论,解含参一元二次不等式;(2)先根据是偶函数,得到,再,,转化为在上的最小值小于在上的最小值,进行求解.【小问1详解】,令,解得或当时,,的解集是;当时,,的解集是;当时,,的解集是.【小问2详解】因为是偶函数,所以,解得:.设函数,因为在上单调递增,所以.设函数.当时,在上单调递增,则,故,即,结合得:;当时,在上单调递减,则,故,即,结合得:综上,的取值范围为18、(1)(2)【解析】(1)根据同角三角函数的关系,平方化简可得,计算即可得答案.(2)由题意得,可得或,根据的范围,可求得的值,代入即可得答案.【小问1详解】由,可得所以,即,所以【小问2详解】由,可得,解得或,而,所以,解得,所以19、【解析】设直线,则将直线与两坐标轴的交点坐标,代入三角形的面积公式进行运算,求出参数,即可得到答案.【详解】设直线,分别与轴、轴交于两点,则,,那么.所以直线的方程是【点睛】本题考查用待定系数法求直线的方程,两直线平行的性质,以及利用直线的截距求三角形的面积.20、(1)证明见解析;(2).【解析】(1)先证明AC⊥BE,再取的中点,连接,经计算,利用勾股定理逆定理得到AC⊥BC,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM⊥平面BEF,即为所求三棱锥的高,进而计算得到其体积.【详解】解:(1)证明:∵四边形为矩形∴∵平面∴平面∵平面∴.如图,取的中点,连接,∴∵,,∴四边形是正方形.∴∴,∵∴∴是直角三角形∴.∵,、平面∴平面(2)由(1)知:∵平面,平面∴∵,、平面∴平面,∴平面即:是三棱锥的高∴【点睛】本题考查线面垂直的证明,棱锥的体积的计算,属基础题.在利用线面垂直的判定定理证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论