上海市虹口区复兴高中2024届高一上数学期末学业质量监测模拟试题含解析_第1页
上海市虹口区复兴高中2024届高一上数学期末学业质量监测模拟试题含解析_第2页
上海市虹口区复兴高中2024届高一上数学期末学业质量监测模拟试题含解析_第3页
上海市虹口区复兴高中2024届高一上数学期末学业质量监测模拟试题含解析_第4页
上海市虹口区复兴高中2024届高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市虹口区复兴高中2024届高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.若,则a,b,c的大小关系是()A. B.C. D.2.()A.1 B.0C.-1 D.3.函数的零点所在的一个区间是A. B.C. D.4.函数对于定义域内任意,下述四个结论中,①②③④其中正确的个数是()A.4 B.3C.2 D.15.入冬以来,雾霾天气在部分地区频发,给人们的健康和出行造成严重的影响.经研究发现,工业废气等污染排放是雾霾形成和持续的重要因素,治理污染刻不容缓.为降低对空气的污染,某工厂采购一套废气处理装备,使工业生产产生的废气经过过滤后再排放.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:h)间的关系为(,k均为非零常数,e为自然对数底数),其中为t=0时的污染物数量,若经过3h处理,20%的污染物被过滤掉,则常数k的值为()A. B.C. D.6.函数与则函数所有零点的和为A.0 B.2C.4 D.87.关于的不等式的解集为,,,则关于的不等式的解集为()A. B.C. D.8.已知函数则其在区间上的大致图象是()A. B.C. D.9.对于实数x,“0<x<1”是“x<2”的()条件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要10.给出下列命题:①函数为偶函数;②函数在上单调递增;③函数在区间上单调递减;④函数与的图像关于直线对称.其中正确命题的个数是()A.1 B.2C.3 D.411.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则12.已知,则的值为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.若函数在单调递增,则实数的取值范围为________14.写出一个最小正周期为2的奇函数________15.已知函数,则函数的值域为______16.已知是定义在R上的周期为2的奇函数,当时,,则___________.三、解答题(本大题共6小题,共70分)17.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由18.已知(1)化简(2)若是第三象限角,且,求的值19.如图,是正方形,直线底面,,是的中点.(1)证明:直线平面;(2)求直线与平面所成角的正切值.20.对于函数,存在实数,使成立,则称为关于参数的不动点.(1)当时,凾数在上存在两个关于参数的相异的不动点,试求参数的取值范围;(2)对于任意的,总存在,使得函数有关于参数的两个相异的不动点,试求的取值范围.21.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点(Ⅰ)求证:平面AB1D1∥平面EFG;(Ⅱ)A1C⊥平面EFG22.定义在上的函数(且)为奇函数(1)求实数的值;(2)若函数的图象经过点,求使方程在有解的实数的取值范围;(3)不等式对于任意的恒成立,求实数的取值范围.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.2、A【解析】用诱导公式化简计算.【详解】因为,所以,所以原式.故选:A.【点睛】本题考查诱导公式,考查特殊角的三角函数值.属于基础题.3、B【解析】根据函数的解析式,求得,结合零点的存在定理,即可求解,得到答案.【详解】由题意,函数,可得,即,根据零点的存在定理,可得函数的零点所在的一个区间是.故选:B.【点睛】本题主要考查了函数的零点问题,其中解答中熟记函数零点的存在定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】利用指数的运算性质及指数函数的单调性依次判读4个序号即可.【详解】,①正确;,,②错误;,由,且得,故,③正确;由为减函数,可得,④正确.故选:B.5、A【解析】由题意可得,从而得到常数k的值.【详解】由题意可得,∴,即∴故选:A6、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等7、A【解析】根据题意可得1,是方程的两根,从而得到的关系,然后再解不等式从而得到答案.【详解】由题意可得,且1,是方程的两根,为方程的根,,则不等式可化为,即,不等式的解集为故选:A8、D【解析】为奇函数,去掉A,B;当时,所以选D.点睛:(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系9、D【解析】从充分性和必要性的定义,结合题意,即可容易判断.【详解】若,则一定有,故充分性满足;若,不一定有,例如,满足,但不满足,故必要性不满足;故“0<x<1”是“x<2”的充分不必要条件.故选:.10、C【解析】①函数为偶函数,因为是正确的;②函数在上单调递增,单调增是正确的;③函数是偶函数,在区间上单调递增,故选项不正确;④函数与互为反函数,根据反函数的概念得到图像关于对称.是正确的.故答案为C.11、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力12、C【解析】利用余弦的二倍角公式即可求解.【详解】.故选:C.二、填空题(本大题共4小题,共20分)13、【解析】根据复合函数单调性性质将问题转化二次函数单调性问题,注意真数大于0.【详解】令,则,因为为减函数,所以在上单调递增等价于在上单调递减,且,即,解得.故答案为:14、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.15、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.16、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.18、(1);(2).【解析】分析:(1)根据诱导公式化简即得,(2)先根据诱导公式得,再根据平方关系求,即得的值.详解:(1).(2)由,得:∵是第三象限角,∴则点睛:本题考查诱导公式以及同角三角函数关系,考查基本求解能力.19、(1)证明见解析;(2);【解析】(1)连接,由三角形中位线可证得,根据线面平行判定定理可证得结论;(2)根据线面角定义可知所求角为,且,由长度关系可求得结果.【详解】(1)连接,交于,连接四边形为正方形为中点,又为中点平面,平面平面(2)平面直线与平面所成角即为设,则【点睛】本题考查立体几何中线面平行关系的证明、直线与平面所成角的求解;证明线面平行关系常采用两种方法:(1)在平面中找到所证直线的平行线;(2)利用面面平行的性质证得线面平行.20、(1)(2)【解析】(1)题目转化为,根据双勾函数的单调性得到函数值域,得到范围.(2)根据得到,设,构造函数,根据函数的单调性得到函数的最大值,讨论端点值的大小关系解不等式得到答案.【小问1详解】,,即,,即,函数在上单调递减,在上单调递增,,,当时,,有两个解,故.【小问2详解】,即,,整理得到,故,设,,则,即,设,在上单调递减,在上单调递增,故,当,即或时,,解得或,故或;当,即时,,解得或,故;综上所述:或,即21、(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)连接,推导出四边形是平行四边形,从而.再证出,.从而平面,同理平面,由此能证明平面平面(Ⅱ)推导出,,从而平面,,同理,由此能证明平面AB1D1,从而平面【详解】(Ⅰ)连接BC1,∵正方体ABCD-A1B1C1D1中,AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴AD1∥BC1.又∵E,G分别是BC,CC1的中点,∴EG∥BC1,∴EG∥AD1.又∵EG⊄平面AB1D1,AD1⊂平面AB1D1,∴EG∥平面AB1D1.同理EF∥平面AB1D1,且EG∩EF=E,EG⊂平面EFG,EF⊂平面EFG,∴平面AB1D1∥平面EFG.

(Ⅱ)∵AB1D1正方体ABCD-A1B1C1D1中,AB1⊥A1B.又∵正方体ABCD-A1B1C1D1中,BC⊥平面AA1B1B,∴AB1⊥BC.又∵A1B与BC都在平面A1BC中,A1B与BC相交于点B,∴AB1⊥平面A1BC,∴A1C⊥AB1同理A1C⊥AD1,而AB1与AD1都在平面AB1D1中,AB1与AD1相交于点A,∴A1C⊥平面AB1D1,因此,A1C⊥平面EFG【点睛】本题考查面面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查空间思维能力,是中档题22、(1)1(2)(3)答案见解析【解析】(1)根据题意可得,即可得解;(2)根据函数的图象经过点,可得函数经过点,从而可求得,在求出函数在时的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论