版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省新绛汾河中学2024届数学高一上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如图,在正方体中,分别为的中点,则异面直线与所成的角等于A. B.C. D.2.若函数在区间上为减函数,在区间上为增函数,则A.3 B.2C. D.3.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱4.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.5.下列函数中定义域为,且在上单调递增的是A. B.C. D.6.若,则的值是()A. B.C. D.17.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.8.已知函数的图象如图所示,则函数的图象为A.B.C.D.9.若角,均为锐角,,,则()A. B.C. D.10.已知唯一的零点在区间、、内,那么下面命题错误的A.函数在或,内有零点B.函数在内无零点C.函数在内有零点D.函数在内不一定有零点二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.将函数图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式为________.12.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.13.已知,则__________.14.已知定义在R上的函数f(x),对任意实数x都有f(x+4)=-f(x),若函数f(x)的图象关于y轴对称,且f(-5)=2,则f(2021)=_____15.不等式的解集为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,(1)试比较与的大小关系,并给出证明;(2)解方程:;(3)求函数,(是实数)的最小值17.(1)若正数a,b满足,求的最小值,并求出对应的a,b的值;(2)若正数x,y满足,求的取值范围18.(1)试证明差角的余弦公式:;(2)利用公式推导:①和角的余弦公式,正弦公式,正切公式;②倍角公式,,.19.在中,设角的对边分别为,已知.(1)求角的大小;(2)若,求周长的取值范围.20.已知函数.(1)求解不等式的解集;(2)当时,求函数最小值,以及取得最小值时的值.21.已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集(1)当t=4时,求A∪B及A∩∁RB;(2)若A∪B=A,求实数t的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】取的中点,则由三角形的中位线的性质可得平行且等于的一半,故或其补角即为异面直线与所成的角.设正方体的棱长为1,则,,故为等边三角形,故∠EGH=60°考点:空间几何体中异面直线所成角.【思路点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键,体现了等价转化的数学思想.取的中点,由三角形的中位线的性质可得或其补角即为异面直线与所成的角.判断为等边三角形,从而求得异面直线与所成的角的大小2、C【解析】由题意得当时,函数取得最小值,∴,∴又由条件得函数的周期,解得,∴.选C3、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.4、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.5、D【解析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【详解】因为的定义域为,的定义域为,所以排除选项B,C.因为在是减函数,所以排除选项A,故选D.【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.6、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D7、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.8、A【解析】根据函数的图象,可得a,b的范围,结合指数函数的性质,即可得函数的图象.【详解】解:通过函数的图象可知:,当时,可得,即.函数是递增函数;排除C,D.当时,可得,,,故选A【点睛】本题考查了指数函数的图象和性质,属于基础题.9、B【解析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【详解】角,均为锐角,即,而,则,又,则,所以,.故选:B10、C【解析】利用零点所在的区间之间的关系,将唯一的零点所在的区间确定出,则其他区间就不会存在零点,进行选项的正误筛选【详解】解:由题意,唯一的零点在区间、、内,可知该函数的唯一零点在区间内,在其他区间不会存在零点.故、选项正确,函数的零点可能在区间内,也可能在内,故项不一定正确,函数的零点可能在区间内,也可能在内,故函数在内不一定有零点,项正确故选:【点睛】本题考查函数零点的概念,考查函数零点的确定区间,考查命题正误的判定.注意到命题说法的等价说法在判断中的作用二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、.【解析】由题意利用函数的图象变换规律,即可得出结论.【详解】将函数图象上所有的点向右平行移动个单位长度,可得函数为,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数为.故答案为:.12、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.13、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:14、2【解析】先判断函数的奇偶性,再由恒成立的等式导出函数f(x)的周期,利用奇偶性及周期性化简求解即得.【详解】因为函数f(x)的图象关于y轴对称,则f(x)为偶函数,由f(x+4)=-f(x),可得f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8,则f(2021)=f(5+252×8)=f(5)=f(-5)=2,所以f(2021)=2.故答案为:215、【解析】根据对数函数的单调性解不等式即可.【详解】由题设,可得:,则,∴不等式解集为.故答案:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)或.(3)【解析】(1)与作差,配方后即可得;(2)原方程化为,设,可得,进而可得结果;(3)令,则,函数可化为,利用二次函数的性质分情况讨论,分别求出两段函数的最小值,比较大小后可得各种情况下函数,(是实数)的最小值.试题解析:(1)因为,所以(2)由,得,令,则,故原方程可化为,解得,或(舍去),则,即,解得或,所以或(3)令,则,函数可化为①若,当时,,对称轴,此时;当时,,对称轴,此时,故,②若,当,,对称轴,此时;当时,,对称轴,此时,故,③若,当时,,对称轴,此时;当时,,对称轴,此时,故,;④若,当时,,对称轴,此时;当时,,对称轴,此时,则时,,时,,故,⑤若,当时,,对称轴,此时;当时,,对称轴,此时,因为时,,故,综述:【方法点睛】本题主要考查指数函数的性质分段函数的解析式和性质、分类讨论思想及方程的根与系数的关系.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.17、(1)当且仅当时,取得最小值为18;(2)【解析】(1)化简得,再利用基本不等式求最值;(2)由题得,再解一元二次不等式得解.【详解】(1)原式,当且仅当时取等号,所以最小值为18.(2),即,即,解得,所以,当且仅当取等号所以的取值范围为18、(1)证明见解析;(2)①答案见解析;②答案见解析【解析】在单位圆里面证明,然后根据诱导公式即可证明和,利用正弦余弦和正切的关系即可证明;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令.如图,设单位圆与轴的正半轴相交于点,以轴非负半轴为始边作角,它们的终边分别与单位圆相交于点,,.连接.若把扇形绕着点旋转角,则点分別与点重合.根据圆的旋转对称性可知,与重合,从而,=,∴.根据两点间的距离公式,得:,化简得:当时,上式仍然成立.∴,对于任意角有:.(2)①公式的推导:.公式的推导:正切公式的推导:②公式的推导:由①知,.公式的推导:由①知,.公式的推导:由①知,.19、(1);(2)【解析】(1)由三角函数的平方关系及余弦定理即可得出(2)利用正弦定理、两角和差的正弦公式、三角函数的单调性转化为三角函数求值域即可得出.【详解】(1)由题意知,即,由正弦定理得由余弦定理得,又.(2),则的周长.,,周长的取值范围是.【点睛】本题主要考查了三角函数的平方关系,正余弦定理,两角和差的正弦公式,三角函数的单调性,属于中档题.20、(1)或(2)时,最小值为【解析】(1)直接解一元二次不等式即可,(2)对函数化简变形,然后利用基本不等式可求得结果【小问1详解】由,得或,所以不等式的解集为或;【小问2详解】因为,所以,当且仅当,即时取等号,即取最小值.21、(1)见解析;(2)【解析】(1)由二次不等式的解法得,由集合的交、并、补的运算得,进而可得解(2)由集合间的包含关系得:因为,得:,讨论①,②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 7300.312-2025饲料添加剂第3部分:矿物元素及其络(螯)合物磷酸三钙
- 自主考试羽毛球类题目及答案
- 敢不敢挑战做卷子题目及答案
- 张佳宁高考题目及答案
- 八下中考卷的题目及答案
- 办公室员工培训组织与实施制度
- 问题线索会商研判制度
- 酒吧营销制度
- 大数据清洗工具比较
- 项目管理关键技术要点
- 《人工智能导论》高职人工智能通识课程全套教学课件
- 2025年四川医疗卫生事业单位《卫生公共基础知识》考试真题及答案
- 工程建设项目合同最终结算协议书2025年
- 食堂档口承包合同协议书
- 云南公务接待管理办法
- 农行监控录像管理办法
- 急性呼吸衰竭的诊断与治疗
- 职业技能认定考评员培训
- DB11∕T 1448-2024 城市轨道交通工程资料管理规程
- JG/T 163-2013钢筋机械连接用套筒
- 职业技术学院数字媒体技术应用专业人才培养方案(2024级)
评论
0/150
提交评论