小学教学中渗透数形结合的数学思想方法_第1页
小学教学中渗透数形结合的数学思想方法_第2页
小学教学中渗透数形结合的数学思想方法_第3页
小学教学中渗透数形结合的数学思想方法_第4页
小学教学中渗透数形结合的数学思想方法_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小学教学中渗透数形结合的数学思想方法原来的课标双基:基础知识、基本技能,现在的四基:基础知识、基本技能、基本思想方法、基本活动经验。教学中要让学生学会知识、形成技能,更要让学生学会思想方法数形结合是数学中重要思想方法之一。它既具有数学学科的鲜明特点,又是数学研究的常用方法。数形结合思想----就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合。赞科夫说:“教会学生思考,这对学生来说,是一生中最有价值的本钱”,而要教会学生思考,实质是要教会学生掌握数学的思想方法。常用的数学思想方法有很多,而数形结合思想具有数学学科的鲜明特点,是解决许多数学问题的有效思想。将抽象的数量关系形象化,具有直观性强,易理解、易接受的特点。将直观图形数量化,转化成数学运算,常会降低难度,并且使知识的理解更加深刻明了。一、在计算教学过程中渗透数形结合思想。在理解算理过程中的运用渗透数形结合思想,把抽象的数学概念直观化,帮助学生形成概念建构主义认为学生学习活动的本质是:学习并非对于教师所授予的知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构过程。数学意义所指的“意义”是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。”根据教学内容的不同,引导学生理解算理的策略也是不同的,笔者认为数形结合是帮助学生理解算理的一种很好的方式。如有余数除法”教学片段课始创设情境:13根小棒,能搭出几个正方形?要求学生用除法算式表示搭正方形的过程。(学生动手搭)师:结合图我们能说出这题除法算式的商吗?生:2,可是三个搭完以后还有1根小棒多出来。师反馈板书:13÷4=3……1,讲解算理。师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒?通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。学生学得很轻松,理解得也比较透彻如连除应用题教学片段(二)连除应用题教学片段课一始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。30÷2÷3,学生画图:先平均分成2份,再将获得一份平均分成3份。30÷3÷2,学生画图:先平均分成3份,再将获得一份平均分成2份。30÷(3×2),学生画图:先平均分成6份,再表示出其中的1份。以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。二、在空间与图形教学中渗透数形结合的数学思想方法小学生在学数学的过程中,往往会单维度地思考问题,这其实就是受他们空间想象能力制约的影响。儿童在观察的过程中,只观察到事物的表面现象,却不能透过现象,找出事物的本质。教师应指导他们逐渐懂得看问题应该从什么角度看,找出问题内在的规律,逐步形成由浅入深,将复杂问题简单化,培养学生数形结合的思想。如,教学“体积”概念。教师可以借助形象物体设问,引导学生分析比较。首先观察物体,初步感知。让学生观察一块橡皮和铅笔盒,提问:哪个大,哪个小?又出示一个魔方和一个骰子,提问:那个大,那个小?通过观察2次脚刚好18只脚。得到笼中有5只鸡和2只兔。也可以先在每个头下画上4只脚,结果比题中给出的脚数多了10只。2只2只地划去,划5次后脚的数刚好是18只,得到相同答案。运用数形结合,借助于形象的图形来解题,对于初次接触此类问题的学生来说,不仅学得兴趣、简单,而且能加深用假设法解题的思路的理解,发展学生的思维能力。总之,数形结合是数学问题解决的重要方法,也是一种重要的数学思想,小学数学教学中应有意识地强调与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论