版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十八章平行四边形达标检测试卷(满分100分,答题时间120分钟)一、单项选择题(本题8个小题,每题4分,共32分)1.(2020湖北十堰)已知中,下列条件:①;②;③;④平分,其中能说明是矩形的是()A.① B.② C.③ D.④【答案】B【解析】根据矩形的判定进行分析即可.A.,邻边相等的平行四边形是菱形,故A错误;B.,对角线相等的平行四边形是矩形,故B正确;C.,对角线互相垂直的平行四边形是菱形,故C错误;D.平分,对角线平分其每一组对角的平行四边形是菱形,故D错误.【点睛】本题考查了矩形判定,熟知矩形从边,角,对角线三个方向的判定是解题的关键.2.(2020•绥化)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=12BC;②四边形③EF=EG;④BC=25.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【答案】D【分析】证出DE是△ABC的中位线,则DE=12BC;①正确;证出DF=BC,则四边形DBCF是平行四边形;②正确;由直角三角形斜边上的中线性质得出CD=12AB=BD,则CF=CD,得出∠CFE=∠CDE,证∠CDE=∠EGF,则∠CFE=∠EGF,得出EF=EG,③正确;作EH⊥FG于H,由等腰三角形的性质得出FH=GH=12FG=1,证△EFH∽△CEH,则EHCH=FHEH,求出EH【解答】解;∵CD为斜边AB的中线,∴AD=BD,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴DE是△ABC的中位线,∴AE=CE,DE=12BC;∵EF=DE,∴DF=BC,∴四边形DBCF是平行四边形;②正确;∴CF∥BD,CF=BD,∵∠ACB=90°,CD为斜边AB的中线,∴CD=12AB=BD,∴CF=CD,∴∠CFE=∠∵∠CDE+∠EGC=180°,∠EGF+∠EGC=180°,∴∠CDE=∠EGF,∴∠CFE=∠EGF,∴EF=EG,③正确;作EH⊥FG于H,如图所示:则∠EHF=∠CHE=90°,∠HEF+∠EFH=∠HEF+∠CEH=90°,FH=GH=12∴∠EFH=∠CEH,CH=GC+GH=3+1=4,∴△EFH∽△CEH,∴EHCH∴EH2=CH×FH=4×1=4,∴EH=2,∴EF=F∴BC=2DE=2EF=25,④正确;3.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()A.2 B.52 C.3 【答案】B【解析】根据菱形的对角线互相垂直平分求出OB,OC,AC⊥BD,再利用勾股定理列式求出BC,然后根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.∵菱形ABCD的对角线AC、BD相交于点O,∴OB=12BD=12×6=3,OA=OC=12由勾股定理得,BC=O∴AD=5,∵OE=CE,∴∠DCA=∠EOC,∵四边形ABCD是菱形,∴∠DCA=∠DAC,∴∠DAC=∠EOC,∴OE∥AD,∵AO=OC,∴OE是△ADC的中位线,∴OE=124.如图,平行四边形ABCD中,,BE平分∠ABC,则∠ABE=()A.180B.360C.720D.1080【答案】B。【解析】考点有平行四边形的性质,平行线的性质。因为平行四边形对边平行,由两直线平行,同旁内角互补,已知∠C,可求∠ABC,又BE平分∠ABC,故∠ABE=∠ABC:∵AB∥CD,∴∠ABC+∠C=180°。把∠C=108°代入,得∠ABC=180°-108°=72°。又∵BE平分∠ABC,∴∠ABE=∠ABC=×72°=36°。故选B。5.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是A.1 B.2 C.3 D.4【答案】C【解析】判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.考点是命题与定理.根据平行四边形的性质平行四边形的对边相等,所以①正确;对角线相等的平行四边形是矩形,所以②错误;正方形既是轴对称图形,又是中心对称图形,所以③正确;一条对角线平分一组对角的平行四边形是菱形,所以④正确.6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,其中错误的是()A.①②B.②③C.①③D.②④【答案】B【解析】利用矩形、菱形、正方形间的联系与区别,结合正方形的判定方法分别判断得出即可.A.∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项错误;B.∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项正确;C.∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项错误;D.∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项错误.7.已知四边形中,,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A. B. C. D.【答案】D。【解析】考点是正方形的判定。由∠A=∠B=∠C=90°可判定为矩形,因此再添加条件:一组邻边相等,即可判定为正方形。故选D。8.(2019•山东泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C. D.【答案】D【解析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2二、填空题(本题8个小题,每空4分,共32分)9.(2020•枣庄)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.【答案】85.【解析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF=8−4由勾股定理得:DE=OD2∴四边形BEDF的周长=4DE=4×25=10.(2019•湖北武汉)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.【答案】21°.【解析】设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°。11.(2019内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.【答案】.【解答】∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴64+AB2=4AB2,∴AB=12.如图正方形ABCD的对角线相交于点O,△CEF是正三角形,则∠CEF=__________.【答案】15°.【解析】考点有全等三角形的判定与性质;等边三角形的性质;正方形的性质..根据正方形、等边三角形的性质,可得AO=BO,OE=OF,根据SSS可得△AOE≌△BOF,根据全等三角形的性质,可得对应角相等,根据角的和差,可得答案.∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°.∵△OEF是正三角形,∴OE=OF,∠EOF=60°.在△AOE和△BOF中,,∴△AOE≌△BOF(SSS),∴∠AOE=∠BOF,∴∠AOE=(∠AOB﹣∠EOF)÷2=(90°﹣60°)÷2=15°13.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是.(写出所有正确判断的序号)【答案】①③④.【解析】∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,故①正确;四边形ABCD的面积S=,故②错误;当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,∴AO=EO=3,∵S△BDE=×BD×OE=×BE×DF,∴DF==,∵BF⊥CD,BF∥AD,∴AD⊥CD,EF==,∵S△ABF=S梯形ABFD﹣S△ADF,∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误。14.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.【答案】。【解析】考点有轴对称(最短路线问题),正方形的性质,勾股定理。连接DE,交BD于点P,连接BD。∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值。∵AB=4,E是BC的中点,∴CE=2。在Rt△CDE中,。15.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°【解析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAC=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAC+∠OCA=2∠OAC,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=(180°-45°)/2-90°∴∠BAE=∠OAB﹣∠OAE=22.5°.16.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是.【答案】16【解析】考点有菱形的性质;三角形中位线定理.先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.三、解答题(本题5个题,17题6分、18题6分、19题6分、20题8分、21题10分,共36分)17.(2020•孝感)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.【答案】见解析。【解析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠FDH,在△BEG与△DFH中,∠E=∠FBE=DF∴△BEG≌△DFH(ASA),∴EG=FH.18.(2019•湖北省鄂州市)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【答案】见解析。【解析】根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x根据勾股定理即可得到结论.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=,∴EF=2OE=.19.(2019湖南张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.【答案】(1)见解析;(2)2.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CD,AD=BC,∴△EBF∽△EAD,∴==,∴BF=AD=BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东揭榜制科技协议书
- 工业厂房代建合同范本
- 工程售卖居间合同范本
- 对口班入学协议书模板
- 打印室承包协议书范本
- 学校招聘保安合同范本
- 危重病人的风险评估及护理安全
- 冀教版七年级数学下册对顶角和三线八角张教案
- 理顺前后序简明表其意结构把握类教案
- 道路标线的施工工艺质量控制教案(2025-2026学年)
- 2025-2030房地产行业人才结构转型与复合型培养体系构建
- 道路车辆汽车列车多车辆间连接装置强度要求
- 乐高大班汇报课
- 2026年度安全生产工作计划
- 社区教育师资管理办法
- 自动驾驶汽车在自动驾驶电动游艇领域的应用前景研究报告
- 电缆销售员知识培训内容课件
- 西南空管面试题目及答案
- 医疗器械销售年终汇报
- 煤矿数据管理办法
- 《设备故障诊断与维修》课件-项目二 设备故障诊断
评论
0/150
提交评论