




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市无锡外国语学校九年级数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知点、、在函数上,则、、的大小关系是().(用“>”连结起来)A. B. C. D.2.函数的图象上有两点,,若,则()A. B. C. D.、的大小不确定3.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交4.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.75.下列式子中,y是x的反比例函数的是()A. B. C. D.6.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位7.如图,在中,.以为直径作半圆,交于点,交于点,若,则的度数是()A. B. C. D.8.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A.x(x﹣1)=21 B.x(x﹣1)=42C.x(x+1)=21 D.x(x+1)=429.已知⊙O的半径为4,圆心O到弦AB的距离为2,则弦AB所对的圆周角的度数是()A.30° B.60°C.30°或150° D.60°或120°10.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.12.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.13.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.14.对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣1x+8=0的两个根,则x1⊗x2=________.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长.16.将抛物线向右平移2个单位长度,则所得抛物线对应的函数表达式为______.17.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为__________.18.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题(共66分)19.(10分)已知函数,(m,n,k为常数且≠0)(1)若函数的图像经过点A(2,5),B(-1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数,的图像始终经过同一个定点M.①求点M的坐标和k的取值②若m≤2,当-1≤x≤2时,总有≤,求m+n的取值范围.20.(6分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:00.511.522.533.5400.71.72.94.85.24.60请求出表中小东漏填的数;(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当的面积为时,求出的长.21.(6分)如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.22.(8分)2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形有圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.23.(8分)如图,在中,,分别是,上的点,且,连接,,.(1)求证:四边形是平行四边形;(2)若平分,,,,求的长.24.(8分)已知关于的方程(1)无论取任何实数,方程总有实数根吗?试做出判断并证明你的结论.(2)抛物线的图象与轴两个交点的横坐标均为整数,且也为正整数.若,是此抛物线上的两点,且,请结合函数图象确定实数的取值范围.25.(10分)如图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象(如图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么范围时,输出的y的值满足3≤y≤1.26.(10分)如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】抛物线开口向上,对称轴为x=-1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小.【详解】解:由函数可知:该函数的抛物线开口向上,且对称轴为x=-1.∵、、在函数上的三个点,且三点的横坐标距离对称轴的远近为:、、∴.故选:D.【点睛】主要考查二次函数图象上点的坐标特征.也可求得的对称点,使三点在对称轴的同一侧.2、C【分析】根据题意先确定抛物线的对称轴及开口方向,再根据点与对称轴的远近,判断函数值的大小.【详解】解:∵,∴对称轴是x=-2,开口向下,距离对称轴越近,函数值越大,∵,∴.故选:C.【点睛】本题主要考查二次函数的图象性质及单调性的规律,掌握开口向下,距离对称轴越近,函数值越大是解题的关键.3、D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于1.此时和半径1的大小不确定,则直线和圆相交、相切都有可能.故选D.点睛:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.4、B【分析】直接利用相似三角形的性质得出,故,进而得出AM的长即可得出答案.【详解】解:由题意可得:OC∥AB,则△MBA∽△MCO,∴,即解得:AM=1.故选:B.【点睛】此题主要考查了相似三角形的应用,根据题意得出△MBA∽△MCO是解题关键.5、C【分析】根据反比例函数的定义,反比例函数的一般式是y=(k≠0),即可判定各函数的类型是否符合题意.【详解】A、是正比例函数,错误;B、不是反比例函数,错误;C、是反比例函数,正确;D、不是反比例函数,错误.故选:C.【点睛】本题考查反比例函数的定义特点,反比例函数解析式的一般形式为:y=(k≠0).6、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.7、A【分析】连接BE、AD,根据直径得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度数,根据圆周角定理求出即可.【详解】解:连接BE、AD,
∵AB是圆的直径,
∴∠ADB=∠AEB=90°,
∴AD⊥BC,
∵AB=AC,∠C=70°,
∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°
∴=50°.故选A.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,准确作出辅助线是解题的关键.8、B【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:x(x-1)场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.【详解】设这次有x队参加比赛,则此次比赛的总场数为x(x−1)场,根据题意列出方程得:x(x−1)=21,整理,得:x(x−1)=42,故答案为x(x−1)=42.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,准确找到等量关系是解题的关键.9、D【分析】根据题意作出图形,利用三角形内角和以及根据圆周角定理和圆内接四边形的性质进行分析求解.【详解】解:如图,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圆内接四边形的性质),即弦AB所对的圆周角的度数是60°或120°.故选:D.【点睛】本题考查圆周角定理,圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、C【分析】根据相似三角形的判定定理求出△ABP∽△PCD,再根据相似三角形对应边的比等于相似比的平方解答.【详解】∵△ABC为等边三角形,∴∠B=∠C=60°,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∵AB=BC=3,BP=1,∴PC=2,∴,∴CD=,故选C.【点睛】本题考查了等边三角形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.二、填空题(每小题3分,共24分)11、y=﹣x或y=-4x【解析】分析:直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.详解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(-3,4),设过点A′的正比例函数的解析式为:y=kx,则4=-3k,解得:k=-,则过点A′的正比例函数的解析式为:y=-x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A′,此时A′(1,-4),设过点A′的正比例函数的解析式为:y=k′x,则-4=k′,则过点A′的正比例函数的解析式为:y=-4x.故答案为y=﹣x或y=-4x.点睛:此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.12、.【解析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【详解】解:如图,过点作于点,过点作于点,∵,,∴,∵在中,,∴,在与中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案为:.【点睛】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.13、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件为:∠B=∠P
∵∠PAB=∠QAC,
∴∠PAQ=∠BAC
∵∠B=∠P,
∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.14、±4【解析】先解得方程x2﹣1x+8=0的两个根,然后分情况进行新定义运算即可.【详解】∵x2﹣1x+8=0,∴(x-2)(x-4)=0,解得:x=2,或x=4,当x1>x2时,则x1⊗x2=4×2﹣22=4;当x1<x2时,则x1⊗x2=22﹣2×4=﹣4.故答案为:±4.【点睛】本题主要考查解一元二次方程,解此题的关键在于利用因式分解法求得方程的解.15、这个“果圆”被y轴截得的线段CD的长3+.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【详解】连接AC,BC,∵抛物线的解析式为y=(x-1)2-4,∴点D的坐标为(0,−3),∴OD的长为3,设y=0,则0=(x-1)2-4,解得:x=−1或3,∴A(−1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO⋅BO=3,∴CO=,∴CD=CO+OD=3+,故答案为3+.16、【分析】利用顶点式根据平移不改变二次项系数可得新抛物线解析式.【详解】的顶点为(−1,0),∴向右平移2个单位得到的顶点为(1,0),∴把抛物线向右平移2个单位,所得抛物线的表达式为.故答案为:.【点睛】本题考查了二次函数图象与几何变换,熟练掌握“左加右减,上加下减”的平移规则是解题的关键.17、【分析】由于每个球被摸到的机会是均等的,故可用概率公式解答.【详解】解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)=;故答案为:.【点睛】此题考查了概率公式,要明确:如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为:P(A)=.18、1150cm1【分析】设将铁丝分成xcm和(100﹣x)cm两部分,则两个正方形的边长分别是cm,cm,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm和(100﹣x)cm两部分,列二次函数得:y=()1+()1=(x﹣100)1+1150,由于>0,故其最小值为1150cm1,故答案为:1150cm1.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题(共66分)19、(1);(2)①M(2,3),k=3;②【分析】(1)将两点代入解析式即可得出结果;(2)①二次函数过某定点,则函数表达式与字母系数无关,以此解决问题;②根据二次函数的性质解题【详解】解:(1)①若函数图象经过点A(2,5),将A(2,5)代入得,不成立②若函数图象经过点B(-1,3),将B(-1,3)代入得,解得.∴.(2)①过定点M,与m无关,故,代入,得点M为(2,3),也过点M,代入得,解得k=3.②在时,.,则,∴,即.∵,∴,∴,,∴.【点睛】此题考查含字母系数的二次函数综合题,掌握二次函数的图像与性质是解题的基础.20、(1);(2)详见解析;(3)2.0或者3.7【分析】(1)当x=2时,点C与点O重合,此时DE是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y=4时x的值即可;【详解】(1)当时,即是直径,可求得的面积为4.0,∴;(2)函数图象如图所示:(3)由图像可知,当时,或3.7【点睛】本题考查圆综合题,三角形的面积,函数图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.21、(1)m=2;(2)P(1+,-9)或P(1-,-9)【解析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可.【详解】解:(1)∵抛物线y=-x2+mx+3过(3,0),∴0=-9+3m+3,∴m=2(2)由,得,,∴D(,-),∵S△ABP=4S△ABD,∴AB×|yP|=4×AB×,∴|yP|=9,yP=±9,当y=9时,-x2+2x+3=9,无实数解,当y=-9时,-x2+2x+3=-9,解得:x1=1+,x2=1-,∴P(1+,-9)或P(1-,-9).22、(1)40,补图见解析;(2)10,40,144;(3)【解析】试题分析:(1)根据D等级的有12人,占总数的30%,即可求得总人数,利用总人数减去其它等级的人数求得B等级的人数,从而作出直方图;(2)根据百分比的定义求得m、n的值,利用360°乘以C等级所占的百分比即可求得对应的圆心角;(3)利用列举法即可求解.试题解析:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:40-4-16-12=8(人).(2)A所占的比例是:×100%=10%,C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°;(3)设A等级的小明用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P(小明参加比赛)=.考点:1.条形统计图;2.扇形统计图;3.列表法与树状图法.23、(1)见解析;(2).【分析】(1)根据平行四边形的性质得到∠A=∠C,AD=CB,根据全等三角形的性质和平行四边形的判定定理即可得到结论;(2)根据平行线的性质和角平分线的定义得到∠DAF=∠AFD,求得AD=DF,根据勾股定理的逆定理和勾股定理即可得到结论.【详解】(1)证明:∵四边形是平行四边形,∴且.∵,∴,即,∴四边形是平行四边形.(2)解:∵,∴.∵平分,∴,∴,∴.∵四边形是平行四边形,∴,,∴.∵,,∴,∴.∵,∴,∴.【点睛】本题考查了全等三角形的判定和性质,平行四边形的性质和判定,勾股定理,矩形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.24、(1)无论取任何实数,方程总有实数根;证明见解析;(2).【分析】(1)由题意分当时以及当时,利用根的判别式进行分析即可;(2)根据题意令,代入抛物线解析式,并利用二次函数图像性质确定实数的取值范围.【详解】解:(1)①当时,方程为时,,所以方程有实数根;②当时,所以方程有实数根综上所述,无论取任何实数,方程总有实数根.(2)令,则,解方程,∵二次函数图象与轴两个交点的横坐标均为整数,且为正整数∴∴该抛物线解析式∴对称轴∵,是抛物钱上的两点,且∴【点睛】本题考查二次函数图像的综合问题,熟练掌握二次函数图像的相关性质是解题关键.25、(1)当时,y=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国网河南电力招聘高校毕业生笔试真题
- 2024年鞍山海城市招聘医疗岗位笔试真题
- 法律文化在社会中的表现试题及答案
- 网络管理员考试准备清单2025试题及答案
- 企业战略执行案例试题及答案
- 网络管理员培训指南试题及答案
- 网络服务监控与调优试题及答案
- 企业网管案例分析试题及答案
- 材料力学性能测试疲劳韧性重点基础知识点
- 江西省抚州市金溪县2025年八年级数学第二学期期末质量跟踪监视模拟试题含解析
- 【MOOC】跨文化交际入门-华中师范大学 中国大学慕课MOOC答案
- MOOC 光学发展与人类文明-华南师范大学 中国大学慕课答案
- 2万吨棉杆化机浆项目可行性报告
- 施工现场防汛应急培训记录
- 果蔬干制加工技术课件
- 个人承诺书(建造师)
- 应急预案(危货运输企业)
- 氩气岗位应急处置卡
- 更换破碎机耦合器措施-
- SMT不良品维修作业指导书
- 四年级英语下册Unit11IwasborninJanuary教案教科版(广州三起)
评论
0/150
提交评论