




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EnergyStorageforMiniGrids
StatusandProjectionsofBatteryDeployment
AnEnergyStoragePartnershipReport
EnergyStorageforMiniGrids
StatusandProjectionsofBatteryDeployment
ThisreportoftheEnergyStoragePartnershipispreparedbytheEnergy SectorManagementAssistanceProgram(ESMAP)withcontributionsfromtheAllianceforRuralElectrification(ARE),RicereasulSistemaEnergetico(RSE), LoughboroughUniversity,andtheInter-AmericanDevelopmentBank(IADB). TheEnergyStoragePartnershipisaglobalpartnershipconvenedbythe WorldBankGroupthroughESMAPEnergyStorageProgramtofosterinternationalcooperationtodevelopsustainableenergystorage
solutionsfordevelopingcountries.Formoreinformationvisit:
/the_energy_storage_partnership_esp
ii
ENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
ABOUTESMAP
TheEnergySectorManagementAssistanceProgram(ESMAP)isapartnershipbetweentheWorldBankand
24partners
tohelplow-andmiddle-incomecountriesreducepovertyandboostgrowththroughsustainable
energysolutions.ESMAP’sanalyticalandadvisoryservicesarefullyintegratedwithintheWorldBank’scountryfinancingandpolicydialogueintheenergysector.ThroughtheWorldBankGroup(WBG),ESMAPworksto
acceleratetheenergytransitionrequiredtoachieve
SustainableDevelopmentGoal7
(SDG7)toensureaccesstoaffordable,reliable,sustainable,andmodernenergyforall.IthelpstoshapeWBGstrategiesandprogramstoachievethe
WBGClimateChangeActionPlan
targets.Learnmoreat:
©2023InternationalBankforReconstructionandDevelopment/TheWorldBank
1818HStreetNW,Washington,DC20433
Telephone:202-473-1000;Internet:
RightsandPermissions
Thematerialinthisworkissubjecttocopyright.BecausetheWorldBankencouragesdisseminationofits
knowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercialpurposesiffullattributionto
thisworkisgiven.Anyqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedtoWorldBankPublications,WorldBankGroup,1818HStreetNW,Washington,DC20433,USA;fax:+1-202-522-2625;e-mail:
pubrights@
.
Furthermore,theESMAPProgramManagerwouldappreciatereceivingacopyofthepublicationthatusesthispublicationforitssourcesentincareoftheaddressabove,orto
esmap@
.ThisworkisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
/licenses/
by/3.0/igo
.UndertheCreativeCommonsAttributionlicense,youarefreetocopy,distribute,transmit,andadaptthiswork,includingforcommercialpurposes,underthefollowingconditions:
Attribution—EnergySectorManagementAssistanceProgram(ESMAP).2023.EnergyStorageforMiniGrids:StatusandProjectionsofBatteryDeployment.Washington,DC:WorldBank.
Translations—ThistranslationwasnotcreatedbyTheWorldBankandshouldnotbeconsideredanofficialWorldBanktranslation.TheWorldBankshallnotbeliableforanycontentorerrorinthistranslation.
Adaptations—ThisisanadaptationofanoriginalworkbyTheWorldBank.Viewsandopinionsexpressedintheadaptationarethesoleresponsibilityoftheauthor(s)oftheadaptationandarenotendorsedbyTheWorldBank.
Third-PartyContent—TheWorldBankdoesnotnecessarilyowneachcomponentofthecontentcontained
withintheworkanddoesnotwarrantthattheuseofanythird-partyownedindividualcomponentorpart
containedintheworkwillnotinfringeontherightsofthosethirdparties.Ifyouwishtoreuseacomponentofthework,itisyourresponsibilitytodeterminewhetherpermissionisneededforthatreuseandtoobtainpermissionfromthecopyrightowner.Examplesofcomponentscaninclude,butarenotlimitedto,tables,figures,or
images.
ProductionCredits
ProductionEditor|HeatherAustin
Designer|CircleGraphics,Inc.
FrontCover|©IRENA
BackCover|©IRENA
Allimagesremainthesolepropertyoftheirsourceandmaynotbeusedforanypurposewithoutwrittenpermissionfromthesource.
TABLEOFCONTENTS
ABBREVIATIONS VII
ACKNOWLEDGMENTS VIII
KEYFINDINGS IX
EXECUTIVESUMMARY X
1BATTERYTECHNOLOGIESINMINIGRIDSACROSSTHEWORLD 1
1.1TheGlobalStockofMiniGrids 2
1.2TheGenerationMixofMiniGrids 3
1.3TheRoleofStorage 3
1.4TheRoleoftheLevelizedCostofStorageintheTechnology
SelectionProcess 5
1.5UsingMiniGridsforProductiveUses:BeyondBasicAccesstoElectricity 5
1.6ChallengesFacedbyMiniGridDevelopers 5
2SIZEOFTHEGLOBALMARKETFORMINIGRIDANDENERGYSTORAGE 7
2.1NumberofPeoplewithoutAccesstoElectricity 7
2.2ProjectedAccessby2030 8
2.3RuralMiniGridInstallationsin2021 8
2.4ForecastingGlobalDemandforMiniGridsandBatteryStorageSystems 9
3SELECTIONOFBATTERYTECHNOLOGY 12
3.1FactorsInvestorsConsider 12
3.2ComparisonofStorageTechnologies 14
3.3TheCapitalCostofBatteries 15
3.4TheLevelizedCostofStorage 16
4FUTURETRENDSINBATTERYSTORAGEFORMINIGRIDAPPLICATION 20
4.1UsedLithium-IonBatteriesasaStationaryStorageSolution 20
4.2Iron-AirBatteriesforLong-TermEnergyStorage 21
4.3SodiumIonBatteries 22
4.4Hydrogen-PoweredStorage 22
4.5FlywheelEnergyStorageforMiniGridStabilization 22
5CASESTUDIES 24
5.1SolarMiniGridswithLeadAcidBatteries:TheHuskPowerMicrogrids
InitiativeinIndiaandNigeria 24
5.2SolarHybridMiniGridwithLithiumIronPhosphateBatteries:TheLolwe
Islands,Uganda 25
ivENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
5.3SolarHybridMiniGridwithLithium-IonNickelManganeseCobaltBatteries:
SanSeth,Bogale,Myanmar 26
5.4SolarHybridMiniGridwithLithiumIronPhosphateBatteries:Dancitagi,
Nigeria 26
5.5SolarMiniGridwithLithiumIronPhosphateBatteries:Makhala,
Amperehour,India 27
5.6SolarMiniGridwithVanadiumRedoxFlowBattery:Maldives 28
5.7SolarMiniGridwithFlywheelEnergyStorageSystems:ThePhilippines 28
6RECOMMENDATIONS 31
REFERENCES 33
APPENDIXA:TYPESOFENERGYSTORAGE 35
APPENDIXB:IMPROVINGTHEPERFORMANCEOFLEADACIDBATTERY
STORAGEMINIGRIDS 38
LISTOFFIGURESANDTABLES
LISTOFFIGURESANDTABLES
FIGURES
1.1NumberofInstalledandPlannedMiniGrids,byRegion,2021 2
1.2NumberofInstalledandPlannedMiniGridsinSelectedCountries,2022 2
1.3GenerationMixofInstalledandPlannedMiniGrids,2019 3
1.4BatteryStorageTransitioninRuralMiniGridsinAsiaandAfrica,2012–21 3
1.5PrimarySourceofBatteryStoragebySelectedMiniGridDevelopersin2017–21 4
1.6MiniGridBatteryStorageasPercentageofTotalCapacity,byTechnology
Type,2012–21 4
1.7SharesofLeadAcidandLithium-IonasSourcesofBatteryStorageby
MiniGridsinSouthandSoutheastAsiaandAfrica,2022 4
1.8EffectofGridLoadFactoronLevelizedCostofElectricity 5
2.1NumberofPeopleWithoutAccesstoElectricity,byRegion,2021and2030 8
2.2ProjectedAnnualIncreaseinNumberofRuralPeoplewithAccessto
Electricity,byRegion,2021–30 8
2.3DistributionofMiniGridCapacity,byRegion,2021 9
2.4ProjectedAnnualGlobalDemandforRuralMiniGridintheLow-,Base-,
andHigh-CaseScenarios,2021–30 10
2.5ProjectedGlobalCumulativeCapacityAdditionofNewRuralMiniGrids,
2022–30 10
2.6ProjectedGlobalDemandforBatteriesforRuralMiniGrids,2021–30 11
3.1EstimatedandProjectedDemandforBatteriesforMiniGrids,byType,
2021–30 13
3.2CostofSix-HourStorage,byBatteryType,2022–30 15
3.3LevelizedCostofStorageofSelectedBatteryTypesatDifferentDurations 18
3.4ContributionsofCapitalExpense,OperationsandMaintenance,Residual
Value,andElectricityCosttotheLevelizedCostofStorage,byBatteryType 18
3.5EstimatedandProjectedLevelizedCostofStorageforSix-HourDuration
System,byBatteryType 19
4.1ProjectedChangesinBatteryPerformanceBetween2018and2025,
byTypeofBattery 21
5.1HuskMiniGridintheVillageofAkura,inNasawaraState,Nigeria 25
5.2HybridSolarMiniGridintheLolweIslands,Uganda 25
v
viENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
5.3IceManufacturingUnitPoweredbyEngie-Equatorial’sSolarMiniGridinthe
LolweIslands,Uganda 26
5.4HybridSolarMiniGridinSanSeth,Bogale,Myanmar 27
5.5SolarHybridMiniGridwithContainerizedEnergyStorageSolutionsInstalled
byPowerGeninDancitagi,Nigeria 27
5.6SolarMiniGridwithContainerizedBatteryEnergyStorageSystemin
Makhala,India 28
5.7VanadiumRedoxFlowBatteryEnergyStorageSystemattheMalahiniKuda
BandosResort,Maldives 29
5.8KineticEnergyStorageSystemsinthePalawanislands,thePhilippines 30
TABLES
2.1EstimatedandProjectedMiniGridCapacityperHousehold,byRegion,
2021and2030 9
2.2BatteryCapacityinSelectedMiniGridProjectsInstalledin2020–21 11
2.3RatioofBatteryCapacitytoMiniGridInstalledCapacity 11
3.1TechnicalParametersofSelectedBatteryTechnologies 14
3.2PughMatrixRankingofStorageTechnologiesinMiniGridApplications 15
3.3DescriptionsandAssumedValuesinLevelizedCostofBatteryStorage
Calculations 17
ABBREVIATIONS
CAPEX
capitalexpenditure
CSR
CorporateSocialResponsibility
DER
distributedenergyresource
EE
Engie-Equatorial
ESP
EnergyStoragePartnership
ESS
energystoragesystem(s)
FESS
flywheelenergystoragesystem(s)
GWh
gigawatthour(s)
kg
kilogram
kVA
kilovoltampere
kW
kilowatt
kWh
kilowatthour(s)
kWp
kilowattpeak
LCOE
levelizedcostofelectricity
LCOS
levelizedcostofstorage
LFP
lithiumferro-phosphate
MWh
megawatt(s)
NMC
nickelmanganesecobalt
O&M
operationsandmaintenance
PALECO
PalawanElectricCooperative
PV
photovoltaic
SIPCOR
S.I.PowerCorporation
VRFB
vanadiumredoxflowbattery
W
watt
Wh
watthour
Wp
wattpeak
AllcurrencyisinUnitedStatesdollars(US$,USD),unlessotherwiseindicated.
vii
ACKNOWLEDGMENTS
T
hisreportwaspreparedbytheWorldBank’sEnergySectorManagementAssistanceProgram(ESMAP)andCustomizedEnergySolutions,andundertheauspicesoftheWorkingGroupFiveoftheEnergyStoragePartnershipwithtechnicalcontributionsandreviewsbyJonExel(SeniorEnergySpecialist,WB),ChrisGreacen(Consultant,WB),andAlfredoVillavicencio(Consultant,WB).
GabrielaElizondoAzuela(PracticeManager),ChandraGovindarajalu(LeadEnergySpecialist),JulietPumpuni(SeniorEnergySpecialist,WB),andClemenciaTorresdeMästle(SeniorEnergy
Specialist,WB)providedinvaluablecontributionsandoverallguidance.
SpecialthankstoHuskPowerSystems,EngieEnergyAccess,PowerGen,Amperehour,andAmberKineticsforprovidinginformationforthecasestudies;andtothefollowingEnergyStoragePartnershippartners–JensJaeger(ARE),LucianoMartini(RSE),EdBrown(Loughborough
University),andEdwinMalagon(IADB)whoparticipatedinthepeerreviewprocess.
KEYFINDINGS
hisreportspecificallyfocusesonbatteryenergystorageindecentralizedoff-grid
T
minigridslocatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesused
inminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparison
ofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbattery
technologies,casestudies,andrecommendations.
Inthehigh-casescenario,itisprojectedthatannualdemandforminigridbatteriesis
projectedtoincreasetoover3,600MWhby2030fromaround180MWhin2020.Inabase-case
scenario,annualdemandexceeds2,200MWh,whileinthelowcaseannualdemandisaround
1,500MWh.
Theselectionofbatterytechnologyformini-gridprojectsisamulti-faceteddecisionbased
onfactorssuchascyclelife,depthofdischarge,typeofloadconnectedtothegrid,energydensity,
C-rating,thermalrunaway,maintenance,after-salesservice,hardwarecompatibility,maturity,cost,
batterydegradation,operatingconditions,andenvironmentalconcerns.
Thelevelizedcostofstorage(LCOS)iscriticalforoptimaldecision-makinginminigrid
development.Thoughupfrontcostsoftendominatethetechnologyselectionprocess,theLCOS
providesamorecomprehensiveperspectivebyconsideringthelifetimecostofstoragetechnologies.
TheLCOScalculationincorporatesthecapitalexpenditure,operationsandmaintenancecosts,
residualvalue,andcostofchargingthebattery.Whileleadacidbatteriescostlesspernameplate
capacity($/kWh),thesuperiorcyclelife,efficiency,andpermissibleroutinedepthofdischargeof
lithium-ionbatteriesresultinalowerLCOS.
Lithium-ionbatterieshavegrowninpopularityandaredisplacingleadacidbatteries,
thankstoreducedprices,longerlifespan,andminimalmaintenancerequirements.Historically,lead
acidbatterieswerethego-tochoiceduetotheirmaturity,availability,andlowupfrontcost.
Lithium-ionpricesareforecastedtodeclineuntil2030.Incontrast,leadacid,amature
technology,maynotwitnesssignificantpricedrops.Forecastssuggestthatlithium-ionbatteries
willextendtheirleadasthelowest-costbatterytechnologyforminigridsdroppingfrom2022LCOS
of$0.37perkWhto$0.34in2026and$0.32by2030,notwithstandingthelikelihoodthatrawmaterial
costsforlithium-ionbatteriesriseduetodemandfromtheelectricvehicleindustry.Thecostoflead
acidbatterieswilldeclineonlyslightly,from$0.55to$0.54perkWhoverthistimeperiod.
Inthenearfuture,otherbatterystorageoptionsarepromising,including“second-life”
lithium-ionbatteries,sodium-ionbatteries,iron-airbatteries,hydrogen,andflywheelenergystorage
ThisreportincludescasestudiesofminigridsfromAfricaandAsiathathighlightglobal
deploymentofbatterytechnologiesrangingfromconventionalleadacidtolithium-ion,toVRBF
andflywheelstorage.Eachcasestudydescribestheminigrid’srating,energystoragerating,battery
chemistry,businessesserved,communitieselectrified,andthewayinwhichtheelectricityisused.
Minigridenergystoragerecommendationsinclude:studyingbatteryperformanceinactual
operatingconditions,consideringtotalcostandnotjustupfrontbatterycost,adoptingsafetyand
performancestandards,promotingrecyclingpractices,encouragingtheuseofrepurposedbattery
technologies,exemptingminigridbatteriesfromimportduties,providingtechnicalskillstraining,
andcreatingstandardoperatingprocedurestounderstandbatterytechnologyperformance.
ix
EXECUTIVESUMMARY
heEnergyStoragePartnership(ESP),establishedbytheWorldBankin2019,aimsto
T
developandimplementenergystoragesolutionsfordevelopingcountries.Thesesolutions,coupledwithrenewableenergysources,couldprovideelectricitytoover1billionpeoplewhocurrentlylackreliableaccess.Aminigridisaninterconnectedsystemofdistributed
energyresources(DERs)–generallyincludingrenewableenergyandelectricitystorage—that
operatesindependently,servicingcustomergroupsofvarioussizes,fromremoteareastourban
locations.Theseminigridssupportarangeoffacilitiesincludingprimaryhealthcenters,agriculturalactivities,learningcenters,hospitals,airports,andcommercialestablishments.
Thisreportspecificallyfocusesonbatteryenergystorageindecentralizedoff-gridminigrids
locatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesusedinminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparisonofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbatterytechnologies,casestudies,andrecommen-dations.Italsoincludesappendicesthatofferabroadoverviewofmechanical,electrochemical,
andthermalstorage,aswellasperformanceoptimizationofleadacidbatteriesinminigrids.
Globalelectricityneeds,particularlyinremoteandruralareas,areasignificantchallenge.
Asof2020,anestimated740millionpeoplestilllackaccesstoelectricity,577millionofwhomliveinSub-SaharanAfrica(SSA).ThoughSSAhasanelectrificationrateof48%asof2020,ambitiousnationalelectrificationplansincountriessuchasEthiopia,Ghana,Kenya,Nigeria,Rwanda,and
Senegalaimtoattainuniversalaccessby2030.Someofthese2030targetshavebeenimpactedbytheCOVID-19pandemic,withmanydevelopingcountrieslikelytoexperiencedelays.Undertheexistingtrajectory,itisexpectedthatabout800millionpeoplewillgainaccesstoelectricitybetween2021and2030,leaving560millionunelectrified.Toachievefullelectrificationby2030,itisnecessarytoprovideelectricitytoaround1.3billionpeople.
Growingdeploymentofminigridsarereachingsomeofthisunelectrifiedpopulation,with
21,000minigridscurrentlyservingabout48millionpeopleworldwide.Toservehalfabillionpeopleby2030,theworldneedsafleetof217,000minigrids,mostofwhichwillbepredominatelypoweredbysolarelectricitywithbatterybackup.
SouthAsiapresentlyleadswiththehighestnumberofinstalled(9,600)andplanned(19,000)minigrids.Afghanistan,India,andMyanmarcompriseabout80%ofminigridsinthisregion.Africaisestimatedtohaveabout3,100installedminigridswithabout9,000inthepipeline.InAfrica,
Nigeria,Tanzania,Senegal,andEthiopiaareamonganumberofcountriesthathaveembarkedonambitiousprojectstoboosttheirnationalelectrificationratesusingminigrids.Initiativessuchas
theNigerianElectrificationProjectandtheRuralElectrificationAgencyofSenegalintendtoprovidepoweraccesstooveramillionhouseholdsandenterprisesusingminigrids.
Theparadigmisshiftingfromtraditionaldieselandhydro-basedgridstothird-generationminigridspoweredbysolarandhybridenergysystemsandemployingadvancedtechnologieslike
prepaidmetersandonlinemonitoring.Thedecliningcostofsolarpanels,coupledwiththeabundantavailabilityofsunshineindevelopingcountries,ismakingsolar-poweredminigridsaneconomicallyfeasibleandenvironmentallyconsciouschoice.
In2021,approximately1,100ruralminigridprojectswereinstalledglobally,providing80MWofcapacity.SouthAsialedinannualinstallations,followedbySub-SaharanAfricaandSoutheastAsia.Projectionsforglobaldemandforminigridsbetween2022and2030,alongsidetheneedforbatterystoragesystemstosupporttheseminigrids,havebeenformulatedunderthreescenarios—highcase,basecase,andlowcase.
Inthehigh-casescenario,itisprojectedthatannualdemandforminigridbatteriesisprojectedtoincreasetoover3,600MWhby2030fromaround180MWhin2020.Inabase-casescenario,
Capacity(MWh)
ExECUTIvESUMMARYxi
annualdemandexceeds2,200MWh,whileinthelowcaseannualdemandisaround1,500MWh.Lithium-ionbatteries,inparticular,haveseenincreasedusageinminigrids,especiallyinSub-SaharanAfrica.By2030,lithium-ionbatterypenetrationisprojectedtoriseto70percentfrom55percentin2021(FigureES.1).
Expandingtheroleofminigridsforproductiveuses,beyondbasicelectricityaccess,allowsforincreasedgridutilizationwithoutacorrespondingriseinpeakload.Theoutcomeislowerlevelizedcostsofelectricity(LCOE)andexpeditedreturnoninvestmentfordevelopers.CasestudiesfromBangladeshandIndiavalidatetheeffectivenessofthisapproach.
Despitetheirimmensepotential,minigridsfacevariouschallenges,includingremoteprojectlocations,difficultiesinmonitoringandmaintenance,sustainabilityconcerns,taxationissues,riskofstrandedassets,lackoffinancing,andanabsenceofstandardization.Operationalchallengesrelatedtotemperaturealsopresentdifficulties,particularlyforstoragetechnologies.Overcomingthesebarrierswillbevitaltoleveragethefullpotentialofminigridsinmeetingtheworld’senergyaccessgoals.
Storagetechnologiesarecentraltotheefficiencyandreliabilityofminigrids.Theselectionofbatterytechnologyformini-gridprojectsisamulti-faceteddecisionthatinvestorsbaseonfactorssuchascyclelife,depthofdischarge,typeofloadconnectedtothegrid,energydensity,C-rating,thermalrunaway,maintenance,after-salesservice,hardware
compatibility,maturity,cost,batterydegradation,operatingconditions,andenvironmentalconcerns(TableES.1).
Historically,leadacidbatterieswerethego-tochoiceduetotheirmaturity,availability,andlowupfrontcost.
Basedonadatabaseof170minigridsusing30MWhofcombinedstorage,lithium-ionbatterieshavegrownin
popularityandaredisplacingleadacidbatteries,thankstoreducedprices,longerlifespan,andminimalmaintenancerequirements.AqualitativePughmatrixassessmentwithresponsesfromminigriddevelopersrevealslithium-ionasthemostsuitabletechnology,despiteredoxflowbatteriesscoringhighonbatterylifeandenvironmentalfriendliness.
VanadiumRedoxFlowBatteries(VRFBs)alsoshowpromiseduetotheirlongoperationallife,highdepthof
discharge,robustperformanceacrossarangeoftemperatures,andpotentialforcostreductionthroughinnovativebusinessmodelssuchasvanadiumleasing.
Whenconsideringthecapitalcostofbatteries,leadacid,amaturetechnology,maynotwitnesssignificantpricedrops.Incontrast,lithium-ionpricesareforecastedtodeclineuntil2030,notwithstandingthelikelihoodthatraw
materialcostsforlithium-ionbatteriesriseduetodemandfromtheelectricvehicleindustry.
Consideringthelevelizedcostofstorage(LCOS)iscriticalforoptimaldecision-makinginminigriddevelopment.Thoughupfrontcostsoftendominatethetechnologyselectionprocess,theLCOSprovidesamorecomprehensiveperspectiveby
consideringthelifetimecostofstoragetechnologies.TheLCOScalculationincorporatesthecapitalexpenditure,operationsandmaintenancecosts,residualvalue,andcostofchargingthebattery.Whileleadacidbatteriescostlesspernameplatecapacity($/kWh),thesuperiorcyclelife,efficiency,andpermissibleroutinedepthofdischargeoflithium-ionbatteriesresultinalowerLCOS.ForVRFBs,theCAPEXperkWhsignificantlydropsasstoragedurationincreases.
Forecastssuggestthatlithium-ionbatterieswillextendtheirleadasthelowest-costbatterytechnologyfor
minigridsdroppingfrom2022LCOSof$0.37perkWhto$0.34in2026and$0.32by2030,whilethecostofleadacidbatterieswilldeclineonlyslightly,from$0.55to$0.54perkWhoverthistimeperiod.VRFBsareexpectedtobecomeincreasinglycompetitivewithleadacidbatteries(FigureES.2).
FIGUREES.1:ProjectedGlobalDemandforBatteriesforRuralMiniGrids,2021–30
4,000
3,500
3,000
2,500
2,000
1,500
1,000
500
0
Source:CES.
2021202220232024202520262027202820292030
LowCaseBaseCaseHighCase
LCOS($/kWh)
xiiENERGYSTORAGEFORMINIGRIDS:STATUSANDPROJECTIONSOFBATTERYDEPLOYMENT
TABLEES.1:TechnicalParametersofSelectedBatteryTechnologies
Parameter
BatteryType
LeadAcid
AdvancedLeadAcid
Lithium-Ion
NiNaCl2
Vanadium
RedoxBatteries
(VRB)
Zn–Br(flowtech)
Batterychemistry
Lead
Lead,carbonelectrodes
NMC/LFP
Nickel,sodiumchloride
Vanadium
Zinc,bromine
Round-tripefficiency(percent)
60–80
80–90
85–95
70–90
60–70
68–70
C-rate
C/10
C/5
C/4-2C
C/6-C/8
C/5-C/8
C/3–C/4
Depthofdischarge(percent)
50–60
70–80
90
80
100
100
Energydensity(Wh/kg)
40–60
27–30
80–150
65–70
7–8
15–25
Cyclelife
500–1,000
1,200–1,800
2,000–6,000
4,500–5,000
7,000–10,000
3,000–3,500
Safety
High
High
Medium
Medium
High
Medium
CAPEX($/kWh)
80–150
120–300
250–350
750–1,000
600–1000
750–800
Toxicityofchemicals
High
High
High
Medium
Medium
High
Operatingtemperature(°C)
–20–50
–20–50
0–55
270–350
15–55
20–50
Self-discharge(percent/month)
10–15
3–5
0.5–2
5
5
60
Source:CES.
FIGUREES.2:EstimatedandProjectedLevelizedCostofStorageforSix-HourDurationSystem,byBatteryType
0.6
0.5
0.4
0.3
0.2
0.1
0.0
2022
2026
2030
LeadAcid
0.55
0.54
0.54
Adv.LeadAcid
0.52
0.50
0.49
Li-ionLFP
0.37
0.34
0.32
VanadiumRedox
0.43
0.41
0.40
NiNaCl2
0.55
0.51
0.48
Source:CES.
ExECUTIvESUMMARYxiii
Inthenearfuture,otherbatterystorageoptionsarepromising.“Second-life”lithium-ionbatteriespresentsapotentialstationarystoragesolutionaftertheyhavebeencycledoutofuseinautomotiveapplicationsandthoroughlytested.
Sodium-ionbatterieshaveemergedasapotentialsolutionforenergystorageinsolarmini-grids,withadvantagesoverlithium-ionbatteriesintermsofrawmaterialabundance,reasonablecyclelife,comparableenergystoragecapacity,adaptablemanufacturingprocesses,andimprovedsafetyandstability.Iron-airbatteriesmightofferaviablepathforlow-costlong-termenergystorage,despitetheirlowerenergydensity.Hydrogen-poweredstoragesolutions,capable
ofstoringenergyforlongerperiodsthanbatteries,arebeingproposedasalternativestotraditionaldieselgenerators
andcouldpotentiallypowerminigridsinremoteareas.Flywheelenergystorage,whichstoreskineticenergyinarotatingmass,offerssignificantadvantages,suchasalonglifetime,increasedcharge-cyclecapabilities,andrapidoutput,while
lackinghaza
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主-肺动脉隔缺损的临床护理
- 浙江省衢州市五校联盟2024-2025学年高二下学期期中联考技术试题(含答案)
- 帛琉旅游住宿太平洋度假村风景秀丽
- 网上研修学习心得体会模版
- 建筑材料与人居环境
- 安保试用期总结转正工作总结模版
- 造口病人自我护理
- 高二英语下学期期末总结模版
- 肺炎疫苗接种后高烧护理常规
- 发力新质生产力赛道
- 语文五年级 【知识精讲】7.阅读(2)文言文阅读
- 社会心理学8-人际关系课件
- QC-R 596-2017高速铁路板式无砟轨道自密实混凝土高清-无水印
- 邻补角、对顶角、同位角、内错角、同旁内角经典习题-一对一专用
- 保密管理-保密教育培训签到簿
- 常见病媒生物分类鉴定
- 手术室剖宫产护理查房-课件
- 隧道工程隧道洞口临建施工方案
- DBJ∕T13-374-2021 福建省钢筋桁架叠合楼板技术标准
- 事故池管理的有关规定
- 高中语文部编版选择性必修下册第四单元 单元学习导航 课件 (8张PPT)
评论
0/150
提交评论