




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省绍兴市高级中学数学高二第二学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的可导函数的导函数为,满足,且,则不等式(为自然对数的底数)的解集为()A. B. C. D.2.函数的零点所在的大致区间是()A. B.C. D.3.学校新入职的5名教师要参加由市教育局组织的暑期3期上岗培训,每人只参加其中1期培训,每期至多派2人,由于时间上的冲突,甲教师不能参加第一期培训,则学校不同的选派方法有()A.种 B.种 C.种 D.种4.中国古代数学的瑰宝——《九章算术》中涉及到一种非常独特的几何体——鳖擩,它是指四面皆为直角三角形的四面体.现有四面体为一个鳖擩,已知平面,,若该鳖擩的每个顶点都在球的表面上,则球的表面积为()A. B. C. D.5.集合,,若,则的值为().A. B. C. D.6.若,则()A. B. C. D.7.在空间直角坐标中,点到平面的距离是()A.1 B.2 C.3 D.8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为形(每次旋转90°仍为形的图案),那么在个小方格组成的方格纸上可以画出不同位置的形需案的个数是()A.36 B.64 C.80 D.969.若向量,满足,与的夹角为,则等于()A. B. C.4 D.1210.设函数,则()A.3 B.4 C.5 D.611.定义在上的偶函数的导函数为,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为(
)A. B. C. D.12.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是()A.若则B.若则C.若,,则D.若,,则二、填空题:本题共4小题,每小题5分,共20分。13.为了了解学校(共三个年级)的数学学习情况,教导处计算高一、高二、高三三个年级的平均成绩分别为,并进行数据分析,其中三个年级数学平均成绩的标准差为____________.14.用五种不同的颜色给图中、、、、、六个区域涂色,要求有公共边的区域不能涂同一种颜色且颜色齐全,则共有涂色方法__________种.15.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.16.在一个如图所示的6个区域栽种观赏植物,要求同一块区域中种同一种植物,相邻的两块区域中种不同的植物.现有4种不同的植物可供选择,则不同的栽种方案的总数为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的解析式;(2)解关于的不等式.18.(12分)如图,在三棱锥中,,在底面上的射影在上,于.(1)求证:平行平面,平面平面;(2)若,求直线与平面所成角的正弦值.19.(12分)如图1,等边中,,是边上的点(不与重合),过点作交于点,沿将向上折起,使得平面平面,如图2所示.(1)若异面直线与垂直,确定图1中点的位置;(2)证明:无论点的位置如何,二面角的余弦值都为定值,并求出这个定值.20.(12分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程是(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点分别在,上运动,若的最小值为2,求的值.21.(12分)已知数列满足,,设,数列满足.(1)求证:数列为等差数列;(2)求数列的前项和.22.(10分)(1)在复数范围内解方程;(2)已知复数z满足,且,求z的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】令所以,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等2、C【解题分析】
,函数f(x)在(0,+∞)上单调递增,∵f(3)=ln3-1>0,f(e)=lne-=1-<0,∴f(3)·f(e)<0,∴在区间(e,3)内函数f(x)存在零点.故选C.3、B【解题分析】
由题意可知这是一个分类计数问题.一类是:第一期培训派1人;另一类是第一期培训派2人,分别求出每类的选派方法,最后根据分类计数原理,求出学校不同的选派方法的种数.【题目详解】解:第一期培训派1人时,有种方法,第一期培训派2人时,有种方法,故学校不同的选派方法有,故选B.【题目点拨】本题考查了分类计数原理,读懂题意是解题的关键,考查了分类讨论思想.4、B【解题分析】分析:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,算出长方体体对角线即可.详解:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,则,,故.故选:B.点睛:本题主要考查了转化与化归思想的运用.5、D【解题分析】因为,所以,选D.6、D【解题分析】
由于两个对数值均为正,故m和n一定都小于1,再利用对数换底公式,将不等式等价变形为以10为底的对数不等式,利用对数函数的单调性比较m、n的大小即可【题目详解】∵∴0<n<1,0<m<1且即lg0.5()>0⇔lg0.5()>0∵lg0.5<0,lgm<0,lgn<0∴lgn﹣lgm<0即lgn<lgm⇔n<m∴1>m>n>0故选D.【题目点拨】本题考查了对数函数的图象和性质,对数的运算法则及其换底公式的应用,利用图象和性质比较大小的方法7、B【解题分析】
利用空间坐标的定义,即可求出点到平面的距离.【题目详解】点,由空间坐标的定义.点到平面的距离为2.故选:B【题目点拨】本题考查空间距离的求法,属于基础题.8、C【解题分析】
把问题分割成每一个“田”字里,求解.【题目详解】每一个“田”字里有个“”形,如图因为的方格纸内共有个“田”字,所以共有个“”形..【题目点拨】本题考查排列组合问题,关键在于把“要做什么”转化成“能做什么”,属于中档题.9、B【解题分析】
将平方后再开方去计算模长,注意使用数量积公式.【题目详解】因为,所以,故选:B.【题目点拨】本题考查向量的模长计算,难度一般.对于计算这种形式的模长,可通过先平方再开方的方法去计算模长.10、C【解题分析】
根据的取值计算的值即可.【题目详解】解:,故,故选:C.【题目点拨】本题考查了函数求值问题,考查对数以及指数的运算,是一道基础题.11、A【解题分析】
分析:构造新函数,利用导数确定它的单调性,从而可得题中不等式的解.详解:设,则,由已知当时,,∴在上是减函数,又∵是偶函数,∴也是偶函数,,不等式即为,即,∴,∴,即.故选A.点睛:本题考查用导数研究函数的单调性,然后解函数不等式.解题关键是构造新函数.新函数的结构可结合已知导数的不等式和待解的不等式的形式构造.如,,,等等.12、C【解题分析】
对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【题目详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与的位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【题目点拨】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据方差公式计算方差,然后再得标准差.【题目详解】三个数的平均值为115,方差为,∴标准差为.故答案为:.【题目点拨】本题考查标准差,注意到方差是标准差的平方,因此可先计算方差.方差公式为:数据的方差为.14、960【解题分析】分析:先分析出同色区域的情况,然后其他颜色任意排即可.详解:同色的区域可以为AC,AE,AF,BD,BF,CD,CE,DF,共8种,故共有涂色方法8种.故答案为960.点睛:考查排列组合的简单应用,认真审题,分析清楚情况是解题关键,属于中档题.15、【解题分析】试题分析:从甲、乙、丙、丁4位同学中随机选出2名代表共有种基本事件,甲被选中包含种,基本事件,因此甲被选中的概率是考点:古典概型概率16、【解题分析】
先种B、E两块,再种A、D,而种C、F与种A、D情况一样,根据分类与分步计数原理可求.【题目详解】先种B、E两块,共种方法,再种A、D,分A、E相同与不同,共种方法,同理种C、F共有7种方法,总共方法数为【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.本题先种B、E两块,让问题变得更简单.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)令,得,求出的范围,得出的范围,再将代入题中函数解析式即可得出函数的解析式与定义域;(2)将所求不等式转化为,然后解出该不等式组即可得出答案.【题目详解】(1)令,则,,由题意知,即,则.所以,故.(2)由,得.由,得,因为,所以,由,得,即,,解得或.又,,所以或.故不等式的解集为.【题目点拨】本题第(1)问考查函数解析式的求解,对于简单复合函数解析式的求解,常用换元法,但要注意新元的取值范围作为定义域,第(2)问考查对数不等式的解法,一般要转化为同底数对数来处理,借助对数函数的单调性求解,同时也要注意真数大于零这个隐含条件.18、(1)详见解析(2)【解题分析】
(1)证明EF∥BC,从而BC∥平面DEF,结合AB⊥DF,AB⊥DE,推出AB⊥平面DEF,即可证明平面DAB⊥平面DEF.
(2)在△DEF中过E作DF的垂线,垂足H,说明∠EBH即所求线面角,通过求解三角形推出结果.【题目详解】解:(1)证明:因为,所以,分别是,的中点所以,从而平面又,,所以平面从而平面平面(2)在中过作的垂线,垂足由(1)知平面,即所求线面角由是中点,得设,则,因为,则,,,所以所求线面角的正弦值为【题目点拨】本题考查直线与平面所成角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及计算能力,是中档题.19、(1)见解析;(2)【解题分析】
(1)取中点,中点,连结,以为原点,所在直线分别为轴,建立空间直角坐标系,利用向量法能求出图1中点在靠近点的三等分点处;(2)求出平面的法向量和平面的法向量,利用向量法能证明无论点D的位置如何,二面角的余弦值都为定值.【题目详解】解:(1)在图2中,取中点,中点,连结,以为原点,所在直线分别为轴,建立空间直角坐标系,设,则,,∴,,,,故,,∵异面直线与垂直,∴,解得x(舍)或x,∴,∴图1中点在靠近点的三等分点处.(2)证明:平面的法向量,,,设平面的法向量,则即,取,得,设二面角的平面角为,则为钝角,故,∴无论点的位置如何,二面角的余弦值都为定值.【题目点拨】本题考查利用空间向量确定空间中点的位置以及二面角的余弦值的计算,考查运算能力求解能力和推理论证能力,是中档题.20、(1)(2)或.【解题分析】
(1)由极坐标方程与直角坐标方程的互化,即可得出曲线的直角坐标方程;(2)由(1)先确定是圆心为,半径为2的圆,再由曲线的参数方程得到其普通方程,根据点到直线的距离公式即可求出结果.【题目详解】解:(1)因为,所以,所以.将,,代入上式,得的直角坐标方程为.(2)将化为,所以是圆心为,半径为2的圆.将的参数方程化为普通方程为,所以,解得或.【题目点拨】本题主要考查极坐标方程与直角坐标方程的互化,以参数方程与普通方程的互化,熟记公式即可求解,属于常考题型.21、(1)详见解析(2)【解题分析】试题分析:(1)由可得,则数列为等比数列且公比为2.可得数列的通项公式.并将代入用对数的运算法则将其化简.再证为常数.(2)数列是一个等差数列乘以一个等比数列,用错位相减法求数列的前项和.试题解析:(1)由已知可得,,2分3分4分为等差数列,其中.6分(2)①7分②8分①-②得∴12分考点:1等比数列的定义和通项公式;2等差数列的定义和通项公式;3错位想减法求数列的和.【方法点睛】本题涉及等差数列,等比数列,以及求和的方法,属于基础题型,数列求和的方法主要包括:(1)分组求和法,把一个数列分成几个可以直接求和的数列和的形式;(2)裂项相消法:将数列写成的形式,包括,,等形式;(3)错位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年绿色环保智能家居租赁押金退还服务合同
- 2025年新能源汽车销售代理独家授权合同模板
- 2025年新媒体主播线下活动嘉宾招募合同范本
- 2025年冶金项目智能化改造与安全防护协议
- 2025年智能生活馆线上线下融合销售合作协议
- 2025跨境电商债权与股权交易及共同发展战略合同
- 2025年跨境电商进口货物代理合同范本
- 2025年城市更新项目共有住宅房产分割及使用权移交合同
- 2025年度公司业绩目标及员工职位聘任合同
- 2025年中小学人工智能教育平台合作开发与推广合同
- 2024江西机电职业技术学院招聘笔试真题附答案详解
- 2025至2030年中国熔融碳酸盐燃料电池行业市场供需态势及投资潜力研判报告
- 生物矿化调控机制-第2篇-洞察及研究
- 对公账户使用协议书
- 2025年中国工具钢轧辊市场调查研究报告
- 车抵工资协议书
- 食品加工小作坊安全与质量管理培训课件
- 完整临时用电专项施工方案
- 洗涤厂安全知识培训
- 新建长庆桥至西峰工业园铁路专用线 项目实施方案
- 电力增容协议合同
评论
0/150
提交评论