




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市德普外国语学校九年级数学第一学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,已知抛物线的对称轴过点且平行于y轴,若点在抛物线上,则下列4个结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.42.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10353.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是()A. B. C. D.4.已知二次函数,下列说法正确的是()A.该函数的图象的开口向下 B.该函数图象的顶点坐标是C.当时,随的增大而增大 D.该函数的图象与轴有两个不同的交点5.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.6.将抛物线通过一次平移可得到抛物线.对这一平移过程描述正确的是()A.沿x轴向右平移3个单位长度 B.沿x轴向左平移3个单位长度C.沿y轴向上平移3个单位长度 D.沿y轴向下平移3个单位长度7.不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A.5 B.10 C.15 D.208.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形10.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯11.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π12.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于____________.14.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.15.若代数式有意义,则的取值范围是____________.16.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.17.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.18.如图,AD与BC相交于点O,如果,那么当的值是_____时,AB∥CD.三、解答题(共78分)19.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?20.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.21.(8分)现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.
(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.22.(10分)如图,在平面直角坐标系中,的顶点坐标分别为A(2,6),B(0,4),C(3,3).(正方形网格的每个小正方形的边长都是1个单位长度)(1)平移后,点A的对应点A1的坐标为(6,6),画出平移后的;(2)画出绕点C1旋转180°得到的;(3)绕点P(_______)旋转180°可以得到,请连接AP、A2P,并求AP在旋转过程中所扫过的面积.23.(10分)如图,在△ABC中,∠C=60°,AB=4.以AB为直径画⊙O,交边AC于点D.AD的长为,求证:BC是⊙O的切线.24.(10分)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-1.其图象如图所示.⑴a=;b=;⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?⑶由图象可知,销售单价x在时,该种商品每天的销售利润不低于16元?25.(12分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.26.如图,抛物线经过点,点,交轴于点,连接,.(1)求抛物线的解析式;(2)点为抛物线第二象限上一点,满足,求点的坐标;(3)将直线绕点顺时针旋转,与抛物线交于另一点,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数的图象与性质对各个结论进行判断,即可求出答案.【详解】解:∵抛物线的对称轴过点,∴抛物线的对称轴为,即,可得由图象可知,,则,∴,①正确;∵图象与x轴有两个交点,∴,即,②错误;∵抛物线的顶点在x轴的下方,∴当x=1时,,③错误;∵点在抛物线上,即是抛物线与x轴的交点,由对称轴可得,抛物线与x轴的另一个交点为,故当x=−2时,,④正确;综上所述:①④正确,故选:B.【点睛】本题主要考查了二次函数图象与系数的关系、抛物线与x轴的交点,解题的关键是逐一分析每条结论是否正确.解决该题型题目时,熟练掌握二次函数的图象与性质是关键.2、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.3、B【分析】用表示直行、表示右转,画出树状图表示出所有的种等可能的结果,其中恰好有辆车直行占种,然后根据概率公式求解即可.【详解】解:若用表示直行、表示右转,则画树状图如下:∵共有种等可能的结果,其中恰好有辆车直行占种∴(恰好辆车直行).故选:B【点睛】此题考查的是用树状图法求概率.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率等于所求情况数与总情况数之比.4、D【分析】根据二次函数的性质解题.【详解】解:A、由于y=x2-4x-3中的a=1>0,所以该抛物线的开口方向是向上,故本选项不符合题意.
B、由y=x2-4x-3=(x-2)2-7知,该函数图象的顶点坐标是(2,-7),故本选项不符合题意.
C、由y=x2-4x-3=(x-2)2-7知,该抛物线的对称轴是x=2且抛物线开口方向向上,所以当x>2时,y随x的增大而增大,故本选项不符合题意.
D、由y=x2-4x-3知,△=(-4)2-4×1×(-3)=28>0,则该抛物线与x轴有两个不同的交点,故本选项符合题意.
故选:D.【点睛】考查了抛物线与x轴的交点,二次函数的性质,需要利用二次函数图象与系数的关系,二次函数图象与x轴交点的求法,配方法的应用等解答,难度不大.5、D【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】当时,一次函数经过一、二、三象限,反比例函数经过一、三象限;当时,一次函数经过一、二、四象限,反比例函数经过二、四象限.观察图形可知,只有A选项符合题意.
故选:D.【点睛】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.6、A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解.【详解】解:抛物线的顶点坐标为(0,−2),
抛物线的顶点坐标为(3,-2),
所以,向右平移3个单位,可以由抛物线平移得到抛物线.
故选:A.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.7、A【分析】估计利用频率估计概率可估计摸到白球的概率为0.25,然后根据概率公式计算这个口袋中白球的数量.【详解】设白球有x个,根据题意得:,解得:x=5,
即白球有5个,
故选A.【点睛】考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.8、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,
∵点A的坐标是(2,0)
,AO=4,
∵△ABO是等边三角形∴OC=
2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.9、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.10、A【解析】解:A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选A.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11、B【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.12、B【解析】设AB=x,求出BC=x,CD=AC=x,求出BD为(x+x),通过∠ACB=45°,CD=AC,可以知道∠D即为22.5°,再解直角三角形求出tanD即可.【详解】解:设AB=x,
∵在Rt△ABC中,∠B=90°,∠ACB=45°,
∴∠BAC=∠ACB=45°,
∴AB=BC=x,
由勾股定理得:AC==x,∴AC=CD=x∴BD=BC+CD=x+x,
∴tan22.5°=tanD==故选B.【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的性质和判定等知识点,设出AB=x能求出BD=x+x是解此题的关键.二、填空题(每题4分,共24分)13、2【分析】由题意可得EC=2,CF=4,根据勾股定理可求EF的长.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=1.∵△ABE绕点A逆时针旋转后得到△ADF,∴DF=BE=1,∴CF=CD+DF=1+1=4,CE=BC﹣BE=1﹣1=2.在Rt△EFC中,EF.【点睛】本题考查旋转的性质,正方形的性质,勾股定理,熟练运用这些性质解决问题是本题的关键.14、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.15、x≥1且x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,即可求解.【详解】解:根据二次根式有意义,分式有意义得:x-1≥0且x-1≠0,
解得:x≥1且x≠1.
故答案为:x≥1且x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,难度不大.16、【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形.17、【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.18、【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,据此可得结论.【详解】,当时,,.故答案为.【点睛】本题主要考查了平行线分线段成比例定理,解题时注意:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.三、解答题(共78分)19、(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.试题解析:(1)由题意得,==;(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.20、(1);(2)【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;故答案为:;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率所以刚好是一男生一女生的概率为.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.21、(1);(2).【分析】(1)利用概率公式求解即可;(2)利用画树状图得出全部可能的情况,再找出符合题意的情况,即可得出所求概率.【详解】解:(1),∴抽到标有数字3的卡片的概率为;(2)解:用树状图列出所有可能出现结果:共有6种等可能结果,其中2种符合题意.∴(数字之和为负数)=.【点睛】本题考查的知识点是用树状图法求事件的概率,根据题意找出全部可能的情况,再找出符合题意的情况是解此题的关键.22、(1)图见解析;(2)图见解析;(3),AP所扫过的面积为.【分析】(1)先根据点A和的坐标得出平移方式,再根据点坐标的平移变换规律得出点的坐标,然后顺次连接点即可得;(2)先根据旋转的性质得出点的坐标,再顺次连接点即可得;(3)求出的中点坐标即为点P的坐标,再利用两点之间的距离公式可得AP的值,然后利用圆的面积公式即可得扫过的面积.【详解】(1)平移后得到点,的平移方式是向右平移个单位长度,,,即,如图,先在平面直角坐标系中,描出点,再顺次连接即可得到;(2)设点的坐标为,由题意得:点是的中点,则,解得,即,同理可得:,如图,先在平面直角坐标系中,描出点,再顺次连接点即可得到;(3)设点P的坐标为,由题意得:点P是的中点,则,即,,绕点旋转得到,所扫过的图形是以点P为圆心、AP长为半径的半圆,所扫过的面积为.【点睛】本题考查了图形的平移与旋转、点坐标的平移变换规律、圆的面积公式等知识点,熟练掌握点坐标的变换规律是解题关键.23、证明见解析.【分析】连接OD,根据弧长公式求出AOD的度数,再证明AB⊥BC即可;【详解】证明:如图,连接,是直径且
,
.
设,的长为,
解得.
即
在☉O中,..
,,即又为直径,是☉O的切线.【点睛】本题考查切线的判定,圆周角定理以及等腰三角形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、(1)-1,20;(2)当x=10时,该商品的销售利润最大,最大利润是25元;(3)7≤x≤13【分析】(1)利用待定系数法求二次函数解析式得出即可;
(2)利用配方法求出二次函数最值即可;
(3)根据题意令y=16,解方程可得x的值,结合图象可知x的范围.【详解】解:(1)y=ax2+bx-1图象过点(5,0)、(7,16),
∴解得:故答案为-1,20⑵∵∴当x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国行政史试题及答案
- 浙江省越崎中学2024-2025学年物理高二第二学期期末复习检测试题含解析
- 云南省彝良县民族中2024-2025学年数学高二下期末监测试题含解析
- 云南省安宁市实验石江学校2025届生物高二第二学期期末复习检测模拟试题含解析
- 人工智能提示词工程师试题含答案
- 车辆抵押贷款合同审查及范本
- 高层建筑立面测量劳务分包合作合同
- 高端写字楼场地租赁合同范本-承租方
- 灾害预防厂房租赁安全保证合同
- 劳务雇佣合同模板(18篇)
- 广东省佛山市高明区2021-2022学年六年级下学期期末语文试卷
- 近五年广东中考物理真题及答案2023
- 正负离子表面活性剂混合体系双水相性质的测定
- 2024年山东省新动能基金管理限公司招聘18人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 中国哲学经典著作导读智慧树知到期末考试答案章节答案2024年西安交通大学
- MOOC 兽医外科手术学-华中农业大学 中国大学慕课答案
- 三D打印公开课
- 考古发现与中国文化智慧树知到期末考试答案2024年
- 胸痹心痛病中医护理方案完整课件
- 程序的循环结构课件高中信息技术必修计算与数据
- 急性胃肠炎的护理管理
评论
0/150
提交评论