辽宁省抚顺市六校联合体2024届高二数学第二学期期末联考试题含解析_第1页
辽宁省抚顺市六校联合体2024届高二数学第二学期期末联考试题含解析_第2页
辽宁省抚顺市六校联合体2024届高二数学第二学期期末联考试题含解析_第3页
辽宁省抚顺市六校联合体2024届高二数学第二学期期末联考试题含解析_第4页
辽宁省抚顺市六校联合体2024届高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省抚顺市六校联合体2024届高二数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,当取得极值时,x的值为()A. B. C. D.2.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.3.已知函数,是奇函数,则()A.在上单调递减 B.在上单调递减C.在上单调递增 D.在上单调递增4.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.35.若双曲线的一条渐近线为,则实数()A. B.2 C.4 D.6.在的展开式中,的幂指数是整数的共有A.3项 B.4项 C.5项 D.6项7.已知,那么“”是“且”的A.充分而不必要条件 B.充要条件C.必要而不充分条件 D.既不充分也不必要条件8.双曲线x2A.23 B.2 C.3 D.9.已知f(x)=2x,x<0a+log2x,x≥0A.-2 B.2 C.0 D.110.6名同学安排到3个社区,,参加志愿者服务,每个社区安排两名同学,其中甲同学必须到社区,乙和丙同学均不能到社区,则不同的安排方法种数为()A.5 B.6 C.9 D.1211.已知数列满足(,且是递减数列,是递增数列,则A.B.C.D.12.已知复数满足,则的共轭复数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知满足约束条件,则的最大值为__14.若对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为_____.15.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为______cm1.16.湖面上有个相邻的小岛,,,,,现要建座桥梁,将这个小岛连接起来,共有__________不同方案.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为的扇形地上建造市民广场,规划设计如图:内接梯形区域为运动休闲区,其中A,B分别在半径,上,C,D在圆弧上,;上,;区域为文化展区,长为,其余空地为绿化区域,且长不得超过200m.(1)试确定A,B的位置,使的周长最大?(2)当的周长最长时,设,试将运动休闲区的面积S表示为的函数,并求出S的最大值.18.(12分)为了了解学生的身体素质情况,现从某校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示,根据有关国家标准成绩不低于79分的为优秀,将频率视为概率.(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;(Ⅱ)从抽取的这10人(成绩见茎叶图)中随机选取3人,记X表示测试成绩为“优秀”的学生人数,求X的分布列和数学期望.19.(12分)已知函数.(1)若在处的切线与轴平行,求的值;(2)当时,求的单调区间.20.(12分)已知.(1)求的解集;(2)设,求证:.21.(12分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.(1)将直线:(为参数)化为极坐标方程;(2)设是(1)中的直线上的动点,定点,是曲线上的动点,求的最小值.22.(10分)已知函数.(1)讨论的单调性;(2)当时,,求的最大整数值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

先求导,令其等于0,再考虑在两侧有无单调性的改变即可【题目详解】解:,,的单调递增区间为和,减区间为,在两侧符号一致,故没有单调性的改变,舍去,故选:B.【题目点拨】本题主要考查函数在某点取得极值的性质:若函数在取得极值.反之结论不成立,即函数有,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.2、B【解题分析】

分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.3、B【解题分析】分析:因为是奇函数,所以,故,令,则的单调减区间为,从而可以知道在上单调递减.详解:,因是奇函数,故,也即是,化简得,所以,故,从而,又,故,因此.令,,故的单调减区间为,故在上单调递减.选B.点睛:一般地,如果为奇函数,则,如果为偶函数,则.4、C【解题分析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【题目详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【题目点拨】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.5、C【解题分析】

根据双曲线的标准方程求出渐近线方程,根据双曲线的一条渐近线求得m的值.【题目详解】双曲线中,,令,得,所以;又双曲线的一条渐近线为,则,解得,所以实数.故选:C.【题目点拨】本题考查了利用双曲线的标准方程求渐近线方程的应用问题,是基础题.6、D【解题分析】

根据题目,写出二次项展开式的通项公式,即可求出的幂指数是整数的项的个数。【题目详解】由题意知,要使的幂指数是整数,则必须是的倍数,故当满足条件。即的幂指数是整数的项共有项,故答案选D。【题目点拨】本题主要考查二项式定理的应用,解题关键是熟记二项展开式的公式。7、C【解题分析】

先利用取特殊值法判断x•y>0时,x>0且y>0不成立,再说明x>0且y>0时,x•y>0成立,即可得到结论.【题目详解】若x=﹣1,y=﹣1,则x•y>0,但x>0且y>0不成立,若x>0且y>0,则x•y>0一定成立,故“x•y>0”是“x>0且y>0”的必要不充分条件故选:C.【题目点拨】本题考查的知识点是充要条件的定义,考查了不等式的性质的应用,考查了逻辑推理能力,属于基础题.8、A【解题分析】试题分析:双曲线焦点到渐近线的距离为b,所以距离为b=23考点:双曲线与渐近线.9、C【解题分析】

由函数fx=2x,x<0a+log2【题目详解】∵函数fx∴f(﹣1)=12∴f[f(﹣1)]=f12解得:a=0,故选:C.【题目点拨】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.10、C【解题分析】分析:该题可以分为两类进行研究,一类是乙和丙之一在A社区,另一在B社区,另一类是乙和丙在B社区,计算出每一类的数据,然后求解即可.详解:由题意将问题分为两类求解:第一类,若乙与丙之一在甲社区,则安排种数为种;第二类,若乙与丙在B社区,则A社区还缺少一人,从剩下三人中选一人,另两人去C社区,故安排方法种数为种;故不同的安排种数是种,故选C.点睛:该题考查的是有关分类加法计数原理,在解题的过程中,对问题进行正确的分类是解题的关键,并且需要将每一类对应的数据正确算出.11、D【解题分析】试题分析:由可得:,又是递减数列,是递增数列,所以,即,由不等式的性质可得:,又因为,即,所以,即,同理可得:;当数列的项数为偶数时,令,可得:,将这个式子相加得:,所以,则,所以选D.考点:1.裂项相消法求和;2.等比数列求和;12、A【解题分析】

根据复数的运算法则得,即可求得其共轭复数.【题目详解】由题:,所以,所以的共轭复数为.故选:A【题目点拨】此题考查求复数的共轭复数,关键在于准确求出复数Z,需要熟练掌握复数的运算法则,准确求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域,如图所示,化目标函数为,由图可得,当直线过时,直线在轴上的截距最大,所以有最大值为.故答案为1.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14、[25,57]【解题分析】

先把不等式变形为﹣b≤a(x)≤4﹣b恒成立,结合f(x)=x最值,找到的限制条件,结合线性规划的知识可得.【题目详解】对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,可得当x∈[1,4]时,不等式﹣b≤a(x)≤4﹣b恒成立,设f(x)=x,x∈[1,4];可得x∈[1,2]时f(x)递减,x∈[2,4]时f(x)递增,可得时取得最小值4,或时取得最大值5,所以f(x)的值域为[4,5];所以原不等式恒成立,等价于,即,设,则,所以,所以目标函数z=|a|+|a+b+25|=|y﹣x|+|4x+3y+25|=|y﹣x|+4x+3y+25,当y≥x时,目标函数z=3x+4y+25,画出不等式组表示的平面区域,如图,由图可知x=0,y=0时zmin=25,x=4,y=5时zmax=57;当y<x时,目标函数z=5x+2y+25,如图,由图可知x=0,y=0时zmin=25,x=4,y=4时zmax=53;综上可得,|a|+|a+b+25|的范围是[25,57].【题目点拨】本题主要考查不等式恒成立问题及利用线性规划知识求解范围问题,恒成立问题一般是转化为最值问题,线性规划问题通常借助图形求解,侧重考查逻辑推理和数学运算的核心素养.15、144【解题分析】

设小正方形的边长为xcm,【题目详解】设小正方形的边长为xcm则盒子的容积V=V当0<x<2时,V'>0,当2<x<5∴x=2时,V取得极大值,也是最大值,V=故答案为144【题目点拨】本题主要考查了导数在解决实际问题中的应用,考查了学生的阅读理解能力和利用数学知识解决问题的能力,属于基础题目.16、135【解题分析】分析:个相邻的小岛一共可座桥梁,选座,减去不能彼此连接的即可。详解:个相邻的小岛一共可座桥梁,选座不能彼此连接,共135种。点睛:转化问题为组合问题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)、都为50m;(2);;最大值为.【解题分析】

对于(1),设,,m,,在△OAB中,利用余弦定理可得,整理得,结合基本不等式即可得出结论;对于(2),当△AOB的周长最大时,梯形ACBD为等腰梯形,过O作OF⊥CD交CD于F,交AB于E,则E、F分别为AB,CD的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,,,令,,,结合导数,确定函数的单调性,即可求出S的最大值.【题目详解】解:(1)设,,m,,在中,,即.所以.所以,当且仅当时,取得最大值,此时周长取得最大值.答:当、都为50m时,的周长最大.(2)当的周长最大时,梯形为等腰梯形.如上图所示,过O作交于F,交于E,则E、F分别为、的中点,所以.由,得.在中,,.又在中,,故.所以,.令,,,.又及在上均为单调递减函数,故在上为单调递减函数.因,故在上恒成立,于是,在上为单调递增函数.所以当时,有最大值,此时S有最大值为.答:当时,梯形面积有最大值,且最大值为.【题目点拨】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到后,利用导数得到求出,结合函数在公共区间上,减函数+减函数等于减函数,从而确定在上为单调递减函数.属于难题.18、(1)(2)的分布列见解析,期望【解题分析】试题分析:(1)由题意结合对立事件的概率公式可得至少有1人成绩是“优秀”的概率是;(2)的取值可能为0,1,2,3,结合超几何分布的概率公式可得函数的分布列,然后可求得X的数学期望为.试题解析:(1)由茎叶图知,抽取的10人中成绩是“优秀”的有6人,频率为,依题意,从我校学生中任选1人,成绩是“优秀”的概率为,记事件表示“在我校学生中任选3人,至少1人成绩是优良”,则(2)由题意可得,的取值可能为0,1,2,3,,,0123,∴的分布列为:期望点睛:(1)求解本题的关键在于:①从茎叶图中准确提取信息;②明确随机变量X服从超几何分布.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.19、(1)(2)函数在上递增,在上递减【解题分析】

(1)求导数,将代入导函数,值为0,解得.(2)当时,代入函数求导,根据导数的正负确定函数单调性.【题目详解】解:(1)函数的定义域为又,依题有,解得.(2)当时,,令,解得,(舍)当时,,递增,时,,递减;所以函数在上递增,在上递减.【题目点拨】本题考查了函数的切线,函数的单调性,意在考查学生的计算能力.20、(1);(2)证明见解析.【解题分析】

(1)利用零点分段法,写出的分段函数形式,分类讨论求解即可(2)根据,,利用作差法即可求证【题目详解】(1)当时,由,得,解得,所以;当时,,成立;当时,由,得,解得,所以.综上,的解集.(2)证明:因为,所以,.所以,所以.【题目点拨】本题考查利用零点分段法解决绝对值不等式求解、利用作差法处理两式大小关系的证明21、(1);(2).【解题分析】

(1)先将直线的参数方程化为普通方程,再由可将直线的普通方程化为极坐标方程;(2)将点的极坐标化为直角坐标,点所在曲线的方程化为普通方程,可知该曲线为圆,利用当、、与圆心四点共线且点为圆心与点连线线段与圆的交点时,取得最小值,可得出答案。【题目详解】(1)消去参数得,即,∴直线的极坐标方程为.(答案也可以化为)(2)∵的直角坐标为,曲线是圆:(为圆心).∴.∴的最小值为(这时是直线与直线的交点).【题目点拨】本题第(1)问考查的参数方程、极坐标方程与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论