吉林省长春市朝阳区实验中学2024届高二数学第二学期期末学业水平测试试题含解析_第1页
吉林省长春市朝阳区实验中学2024届高二数学第二学期期末学业水平测试试题含解析_第2页
吉林省长春市朝阳区实验中学2024届高二数学第二学期期末学业水平测试试题含解析_第3页
吉林省长春市朝阳区实验中学2024届高二数学第二学期期末学业水平测试试题含解析_第4页
吉林省长春市朝阳区实验中学2024届高二数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市朝阳区实验中学2024届高二数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1..从字母中选出4个数字排成一列,其中一定要选出和,并且必须相邻(在的前面),共有排列方法()种.A. B. C. D.2.已知命题:“,有成立”,则命题为()A.,有成立 B.,有成立C.,有成立 D.,有成立3.“”是“函数在内存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.把语文、数学、英语、物理、化学这五门课程安排在一天的五节课中,如果数学必须比语文先上,则不同的排法有多少种()A.24 B.60 C.72 D.1205.某同学从家到学校要经过两个十字路口.设各路口信号灯工作相互独立,且在第一个路口遇到红灯的概率为,两个路口都遇到红灯的概率为,则他在第二个路口遇到红灯的概率为()A. B. C. D.6.直线与曲线所围成的曲边梯形的面积为()A.9 B. C. D.277.在一项调查中有两个变量和,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为关于的回归方程的函数类型是()A. B.C. D.()8.若数列是等比数列,则“首项,且公比”是“数列单调递增”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.非充分非必要条件9.函数有()A.最大值为1 B.最小值为1C.最大值为 D.最小值为10.已知三棱锥的每个顶点都在球的球面上,平面,,,,则球的体积为()A. B. C. D.11.已知函数.若不等式的解集中整数的个数为3,则的取值范围是(

)A. B. C. D.12.设是可导函数,且满足,则曲线在点处的切线斜率为()A.4 B.-1 C.1 D.-4二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为__________.14.已知命题p:∃x∈R,ex-mx=0,q:∀x∈R,x2-2mx+1≥0,若p∨(q)为假命题,则实数m的取值范围是________.15.已知,且,则__________.16.己知矩阵,若矩阵C满足,则矩阵C的所有特征值之和为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数b的取值范围.18.(12分)已知函数,.(1)讨论的单调性;(2)若有两个零点,求实数的取值范围.19.(12分)2016年底某购物网站为了解会员对售后服务(包括退货、换货、维修等)的满意度,从2016年下半年的会员中随机调查了个会员,得到会员对售后服务的满意度评分如下:958875829094986592100859095778770899390848283977391根据会员满意度评分,将会员的满意度从低到高分为三个等级:满意度评分低于分分到分不低于分满意度等级不满意比较满意非常满意(1)根据这个会员的评分,估算该购物网站会员对售后服务比较满意和非常满意的频率;(2)以(1)中的频率作为概率,假设每个会员的评价结果相互独立.(i)若从下半年的所有会员中随机选取个会员,求恰好一个评分比较满意,另一个评分非常满意的概率;(ii)若从下半年的所有会员中随机选取个会员,记评分非常满意的会员的个数为,求的分布列及数学期望.20.(12分)已知中,,且.(1)求m;(2)求.21.(12分)已知四棱锥的底面为直角梯形,,,,,底面,为的中点.(1)求异面直线与所成角的余弦值;(2)设是棱上的一点,当平面时,求直线与平面所成角的正弦值.22.(10分)(1)已知复数满足,的虚部为,求复数;(2)求曲线、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

排列方法为,选C.2、B【解题分析】

特称命题的否定是全称命题。【题目详解】特称命题的否定是全称命题,所以,有成立的否定是,有成立,故选B.【题目点拨】本题考查特称命题的否定命题,属于基础题。3、A【解题分析】分析:先求函数在内存在零点的解集,,再用集合的关系判断充分条件、还是必要条件。详解:函数在内存在零点,则,所以的解集那么是的子集,故充分非必要条件,选A点睛:在判断命题的关系中,转化为判断集合的关系是容易理解的一种方法。4、B【解题分析】

由题意,先从五节课中任选两节排数学与语文,剩余的三节任意排列,则有种不同的排法.本题选择B选项.5、C【解题分析】

记在两个路口遇到红灯分别为事件A,B,由于两个事件相互独立,所以,代入数据可得解.【题目详解】记事件A为:“在第一个路口遇到红灯”,事件B为:“在第二个路口遇到红灯”,由于两个事件相互独立,所以,所以.【题目点拨】本题考查相互独立事件同时发生的概率问题,考查运用概率的基本运算.6、A【解题分析】直线x=0,x=3,y=0与曲线y=x2所围成的曲边梯形的面积为:.本题选择A选项.7、B【解题分析】

根据散点图的趋势,选定正确的选项.【题目详解】散点图呈曲线,排除A选项,且增长速度变慢,排除选项C、D,故选B.【题目点拨】本小题主要考查散点图,考查回归直线方程等知识,属于基础题.8、B【解题分析】

证明由,可以得到数列单调递增,而由数列单调递增,不一定得到,,从而做出判断,得到答案.【题目详解】数列是等比数列,首项,且公比,所以数列,且,所以得到数列单调递增;因为数列单调递增,可以得到首项,且公比,也可以得到,且公比.所以“首项,且公比”是“数列单调递增”的充分不必要条件.故选:B.【题目点拨】本题考查等比数列为递增数列的判定和性质,考查充分不不必要条件,属于简单题.9、A【解题分析】

对函数进行求导,判断出函数的单调性,进而判断出函数的最值情况.【题目详解】解:,当时,,当时,,在上单调递增,在上单调递减,有最大值为,故选A.【题目点拨】本题考查了利用导数研究函数最值问题,对函数的导函数的正负性的判断是解题的关键.10、B【解题分析】

根据所给关系可证明,即可将三棱锥可补形成长方体,即可求得长方体的外接球半径,即为三棱锥的外接球半径,即可得球的体积.【题目详解】因为平面BCD,所以,又AB=4,,所以,又,所以,则.由此可得三棱锥可补形成长方体如下图所示:设长方体的外接球半径为,则,所以球的体积为,故选:B.【题目点拨】本题考查了三棱锥外接球体积的求法,将三棱锥补全为棱柱是常用方法,属于中档题.11、D【解题分析】

将问题变为,即有个整数解的问题;利用导数研究的单调性,从而可得图象;利用恒过点画出图象,找到有个整数解的情况,得到不等式组,解不等式组求得结果.【题目详解】由得:,即:令,当时,;当时,在上单调递减;在上单调递增,且,由此可得图象如下图所示:由可知恒过定点不等式的解集中整数个数为个,则由图象可知:,即,解得:本题正确选项:【题目点拨】本题考查根据整数解的个数求解参数取值范围的问题,关键是能够将问题转化为曲线和直线的位置关系问题,通过数形结合的方式确定不等关系.12、D【解题分析】

由已知条件推导得到f′(1)=-4,由此能求出曲线y=f(x)在(1,f(1))处切线的斜率.【题目详解】由,得,∴曲线在点处的切线斜率为-4,故选:D.【题目点拨】本题考查导数的几何意义及运算,求解问题的关键,在于对所给极限表达式进行变形,利用导数的几何意义求曲线上的点的切线斜率,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】分析:通过椭圆与双曲线的定义,用和表示出的长度,根据余弦定理建立的关系式;根据离心率的定义表示出两个离心率的平方和,利用基本不等式即可求得最小值。详解:,所以解得在△中,根据余弦定理可得代入得化简得而所以的最小值为点睛:本题考查了圆锥曲线的综合应用。结合余弦定理、基本不等式等对椭圆、双曲线的性质进行逐步分析,主要是对圆锥曲线的“交点”问题重点分析和攻破,属于难题。14、.【解题分析】

根据复合函数的真假关系,确定命题p,q的真假,利用函数的性质分别求出对应的取值范围即可得到结论.【题目详解】若p∨(¬q)为假命题,则p,¬q都为假命题,即p是假命题,q是真命题,由ex﹣mx=0得m=,设f(x)=,则f′(x)==,当x>1时,f′(x)>0,此时函数单调递增,当0<x<1时,f′(x)<0,此时函数单调递递减,当x<0时,f′(x)<0,此时函数单调递递减,∴当x=1时,f(x)=取得极小值f(1)=e,∴函数f(x)=的值域为(﹣∞,0)∪[e,+∞),∴若p是假命题,则0≤m<e;命题q为真命题时,有Δ=4m2-4≤0,则-1≤m≤1.所以当p∨(q)为假命题时,m的取值范围是[0,1].故答案为:【题目点拨】“”,“”“”等形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题的真假;(3)确定“”,“”“”等形式命题的真假.15、0.4【解题分析】分析:先根据正态分布曲线得,再求,最后求.详解:根据正态分布曲线得,所以,所以0.5-0.1=0.4.故答案为:0.4.点睛:本题主要考查正态分布图,意在考查学生对该基础知识的掌握水平和数形结合的思想方法.16、2【解题分析】

本题根据矩阵乘法运算解出矩阵C,再依据特征多项式求出特征值,即可得到所有特征值之和.【题目详解】解:由题意,可设C=,则有•=.即,解得.∴C=.∵f(λ)==(λ﹣1)(λ﹣4)+2=λ2﹣2λ+6=(λ﹣2)(λ﹣1)=0,∴特征值λ1=2,λ2=1.∴λ1+λ2=2+1=2.故答案为:2.【题目点拨】本题主要考查矩阵乘法运算及依据特征多项式求出特征值,本题不难,但有一定综合性.本题属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(Ⅰ)函数,对其进行求导,在处取得极值,可得,求得值;

(Ⅱ)由知,得令则关于的方程在区间上恰有两个不同的实数根,转化为上恰有两个不同实数根,对对进行求导,从而求出的范围;【题目详解】(Ⅰ)时,取得极值,故解得.经检验符合题意.(Ⅱ)由知,得令则在上恰有两个不同的实数根,等价于上恰有两个不同实数根.当时,,于是上单调递增;当时,,于是在上单调递增;依题意有.【题目点拨】本题考查利用导数研究函数的极值及单调性以及方程的实数根问题,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,属中档题.18、(1)当a≤0,在(0,2)上单调递增,在(2,+∞)递减;当,在(0,2)和上单调递增,在(2,)递减;当a=,在(0,+∞)递增;当a>,在(0,)和(2,+∞)上单调递增,在(,2)递减;(2).【解题分析】

(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,可证明,有两个零点等价于,得,可证明,当时与当且时,至多一个零点,综合讨论结果可得结论.【题目详解】(1)的定义域为,,(i)当时,恒成立,时,在上单调递增;时,在上单调递减.(ii)当时,由得,(舍去),①当,即时,恒成立,在上单调递增;②当,即时,或,恒成立,在上单调递增;时,恒成立,在上单调递减.③当,即时,或时,恒成立,在单调递增,时,恒成立,在上单调递减.综上,当时,单调递增区间为,单调递减区间为;当时,单调递增区间为,无单调递减区间为;当时,单调递增区间为,单调递减区间为.(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,令,则在成立,故单调递增,,,有两个零点等价于,得,,当时,,只有一个零点,不符合题意;当时,在单调递增,至多只有一个零点,不符合题意;当且时,有两个极值,,记,,令,则,当时,在单调递增;当时,在单调递减,故在单调递增,时,,故,又,由(1)知,至多只有一个零点,不符合题意,综上,实数的取值范围为.【题目点拨】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.19、(1)可估算该购物网站会员对售后服务比较满意和非常满意的频率分别为和.(2)(i);(ii)分布列见解析,0.6.【解题分析】试题分析:(1)由给出的个数据可得,非常满意的个数为,不满意的个数为,比较满意的个数为,由此可估算该购物网站会员对售后服务比较满意和非常满意的频率;(2)记“恰好一个评分比较满意,另一个评分非常满意”为事件,则.(ii)的可能取值为,由题意,随机变量由此能求出的分布列,数学期望及方差.试题解析:(1)由给出的个数据可得,非常满意的个数为,不满意的个数为,比较满意的个数为,,可估算该购物网店会员对售后服务比较满意和非常满意的频率分别为和,(2)(i)记“恰好一个评分比较满意,另一个评分非常满意”为事件,则.(ii)的可能取值为,,,,,则的分布列为由题可知.20、(1)(2)29524【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论