2024届云南省玉溪市民中高二数学第二学期期末质量检测模拟试题含解析_第1页
2024届云南省玉溪市民中高二数学第二学期期末质量检测模拟试题含解析_第2页
2024届云南省玉溪市民中高二数学第二学期期末质量检测模拟试题含解析_第3页
2024届云南省玉溪市民中高二数学第二学期期末质量检测模拟试题含解析_第4页
2024届云南省玉溪市民中高二数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省玉溪市民中高二数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线与直线围成的平面图形的面积为()A. B. C. D.2.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为()A. B. C. D.3.己知复数z满足,则A. B. C.5 D.254.在△中,为边上的中线,为的中点,则A. B.C. D.5.已知集合,,则()A. B.C. D.6.甲、乙两位同学将高三6次物理测试成绩做成如图所示的茎叶图加以比较(成绩均为整数满分100分),乙同学对其中一次成绩记忆模糊,只记得成绩不低于90分且不是满分,则甲同学的平均成绩超过乙同学的平均成绩的概率为()A. B. C. D.7.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件8.已知,则下列结论正确的是A.是偶函数 B.是奇函数C.是奇函数 D.是偶函数9.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.8910.下列说法中正确的个数是()①命题:“、,若,则”,用反证法证明时应假设或;②若,则、中至少有一个大于;③若、、、、成等比数列,则;④命题:“,使得”的否定形式是:“,总有”.A. B. C. D.11.若函数f(x)=(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则g(x)=的图象是()A. B. C. D.12.复数z满足,则复数z在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.120,168的最大公约数是__________.14.设向量与,共线,且,,则________.15.已知命题,命题.若命题是的必要不充分条件,则的取值范围是____;16.如图,已知正三棱锥,,,点,分别在核,上(不包含端点),则直线,所成的角的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.[来源:](1)当时,解不等式;(2)若,求实数的取值范围.18.(12分)已知,且.(1)求证:;(2)当时,不等式恒成立,求的取值范围.19.(12分)已知函数.(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围.20.(12分)如图,在四边形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)求二面角的余弦值.21.(12分)已知.(1)求的解集;(2)设,求证:.22.(10分)设函数f(x)=,求函数f(x)的单调区间.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果.【题目详解】作出曲线与直线围成的平面图形如下:由解得:或,所以曲线与直线围成的平面图形的面积为.故选D【题目点拨】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.2、C【解题分析】

在下雨条件下吹东风的概率=既吹东风又下雨的概率下雨的概率【题目详解】在下雨条件下吹东风的概率为,选C【题目点拨】本题考查条件概率的计算,属于简单题.3、B【解题分析】

先计算复数再计算.【题目详解】故答案选B【题目点拨】本题考查了复数的化简,复数的模,属于基础题型.4、A【解题分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5、D【解题分析】

求解不等式可得,据此结合交集、并集、子集的定义考查所给的选项是否正确即可.【题目详解】求解不等式可得,则:,选项A错误;,选项B错误;,选项C错误,选项D正确;故选:D.【题目点拨】本题主要考查集合的表示方法,交集、并集、子集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.6、C【解题分析】

首先求得甲的平均数,然后结合题意确定污损的数字可能的取值,最后利用古典概型计算公式求解其概率值即可.【题目详解】由题意可得:,设被污损的数字为x,则:,满足题意时,,即:,即x可能的取值为,结合古典概型计算公式可得满足题意的概率值:.故选C.【题目点拨】本题主要考查茎叶图的识别与阅读,平均数的计算方法,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.7、C【解题分析】不能推出,反过来,若则成立,故为必要不充分条件.8、A【解题分析】因为,所以,又,故,即答案C,D都不正确;又因为,所以应选答案A.9、B【解题分析】试题分析:由题意,①②③④⑤⑥⑦⑧,从而输出,故选B.考点:1.程序框图的应用.10、C【解题分析】

根据命题的否定形式可判断出命题①的正误;利用反证法可得出命题②的真假;设等比数列的公比为,利用等比数列的定义和等比中项的性质可判断出命题③的正误;利用特称命题的否定可判断出命题④的正误.【题目详解】对于命题①,由于可表示为且,该结论的否定为“或”,所以,命题①正确;对于命题②,假设且,由不等式的性质得,这与题设条件矛盾,假设不成立,故命题②正确;对于命题③,设等比数列、、、、的公比为,则,.由等比中项的性质得,则,命题③错误;对于命题④,由特称命题的否定可知,命题④为真命题,故选:C.【题目点拨】本题考查命题真假的判断,涉及反证法、等比中项以及特称命题的否定,理解这些知识点是解题的关键,考查分析问题和解决问题的能力,属于基础题.11、C【解题分析】本题考查指数型函数的奇偶性,单调性;对数函数的图像及图像的平移变换.因为是奇函数,所以恒成立,整理得:恒成立,所以则又函数在R上是增函数,所以于是函数的图像是由函数性质平移1个单位得到.故选C12、A【解题分析】

把已知等式变形,利用复数代数形式的乘除运算化简得答案.【题目详解】解:由,得.∴复数z在复平面内的对应点的坐标为,位于第一象限.故选A.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、24【解题分析】∵,∴120,168的最大公约数是24.答案:2414、-3【解题分析】

根据向量共线的坐标表示即可求解.【题目详解】,,且,共线,即.故答案为:【题目点拨】本题主要考查了向量共线的坐标运算,属于容易题.15、【解题分析】

求得命题,又由命题是的必要不充分条件,所以是的真子集,得出不等式组,即可求解,得到答案.【题目详解】由题意,命题,命题.又由命题是的必要不充分条件,所以是的真子集,设,则满足,解得,经验证当适合题意,所以的取值范围是.【题目点拨】本题主要考查了分式不等式的求解,以及利用充要条件求解参数问题,其中解答中正确求解集合A,再根集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】

考查临界位置,先考查位于棱的端点时,直线与平面内的直线所成的最小的角,即直线与平面所成的角,以及与所成角的最大值,即,于此得出直线、所成角的取值范围.【题目详解】如下图所示:过点作平面,垂足为点,则点为等边的中心,由正弦定理得,平面,易得,当点在线段上运动时,直线与平面内的直线所成角的最小值,即为直线与平面所成的角,设这个角为,则,显然,当点位于棱的端点时,取最小值,此时,,则;当点位于棱的中点时,则点位于线段上,且,过点作交于点,平面,平面,则,又,,平面,平面,,此时,直线与所成的角取得最大值.由于点不与棱的端点重合,所以,直线与所成角的取值范围是.故答案为.【题目点拨】本题考查异面直线所成角的取值范围,解这类问题可以利用临界位置法进行处理,同时注意异面直线所成角与直线与平面所成角定义的区别,并熟悉异面直线所成角的求解步骤,考查空间想象能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】试题分析:(1)当时,,根据绝对值的几何意义按,,分类讨论得到:,然后分区间解不等式或或,得到的范围分别为或或,所以;(2)根据绝对值不等式的性质:,,则由,转化为,所以或,则或。试题解析:(1)当时,,当时,,所以。故;当时,恒成立;当时,,所以。故。综上可知。(2)∵,由题意有,∴,即。考点:1.不等式的解法;2.不等式的性质。18、(1)见证明;(2).【解题分析】

(1)由柯西不等式即可证明;(2)可先计算的最小值,再分,,三种情况讨论即可得到答案.【题目详解】解:(1)由柯西不等式得.∴,当且仅当时取等号.∴;(2),要使得不等式恒成立,即可转化为,当时,,可得,当时,,可得,当时,,可得,∴的取值范围为:.【题目点拨】本题主要考查柯西不等式,均值不等式,绝对值不等式的综合应用,意在考查学生的分析能力,计算能力,分类讨论能力,难度中等.19、(1)或;(2)【解题分析】

(1)当时表示出,再利用分类讨论和不等式解法求得的解集;(2)由题意,时,恒成立,由的范围去绝对值,即可求出的取值范围.【题目详解】(1)当时,,,即,①当时,有,解得;②当时,有,不等式无解;③当时,有,解得;综上,的解集为或;(2)由题意,的解集包含,即时,恒成立,因为,所以,时,的最大值为,即,解得,又,所以.【题目点拨】本题主要考查绝对值不等式的解法,考查学生分析转化能力和计算能力,属于中档题.20、(1)见解析(2)【解题分析】

(1)要证平面,可证平面即可,通过勾股定理可证明,再利用线面垂直可证,于是得证;(2)建立空间直角坐标系,求出平面的一个法向量和平面的一个法向量,再利用数量积公式即得答案.【题目详解】(1)证明:在梯形中,∵,设又∵,∴∴∴,则∵平面,平面∴,而∴平面∵,∴平面(2)分别以直线为轴,轴,轴建立如图所示的空间直角坐标系设则,,,,∴,,设为平面的一个法向量,由,得,取,则∵是平面的一个法向量,∴∴二面角的余弦值为.【题目点拨】本题主要考查线面垂直证明,二面角的相关计算,意在考查学生的空间想象能力,转化能力,逻辑推理能力及计算能力,难度中等.21、(1);(2)证明见解析.【解题分析】

(1)利用零点分段法,写出的分段函数形式,分类讨论求解即可(2)根据,,利用作差法即可求证【题目详解】(1)当时,由,得,解得,所以;当时,,成立;当时,由,得,解得,所以.综上,的解集.(2)证明:因为,所以,.所以,所以.【题目点拨】本题考查利用零点分段法解决绝对值不等式求解、利用作差法处理两式大小关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论