




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省淄博市淄川区般阳中学高二数学第二学期期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则=A.2 B. C. D.12.已知、分别为双曲线的左、右焦点,以原点为圆心,半焦距为半径的圆交双曲线右支于、两点,且为等边三角形,则双曲线的离心率为()A. B. C. D.3.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.64.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A. B. C. D.5.已知,,,则a,b,c的大小关系为A. B. C. D.6.设实数,满足约束条件,则的取值范围是()A. B. C. D.7.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.8.将曲线按照伸缩变换后得到的曲线方程为A. B.C. D.9.一个口袋中装有若干个除颜色外都相同的黑色、白色的小球,从中取出一个小球是白球的概率为,连续取出两个小球都是白球的概率为,已知某次取出的小球是白球,则随后一次取出的小球为白球的概率为()A. B. C. D.10.函数,则在点处的切线方程为()A. B. C. D.11.如图,在杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,则数列的第10项为()A.55 B.89 C.120 D.14412.设,,这两个正态分布密度曲线如图所示.下列结论中正确的是A., B.C., D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数恰有两个零点,则实数的值为___________14.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表玩手机不玩手机合计学习成绩优秀4812学习成绩不优秀16218合计201030经计算的值,则有__________的把握认为玩手机对学习有影响.附:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,.15.在正数数列an中,a1=1,且点an,an-1n≥2在直线16.的展开式的第3项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.周一周二周三周四周五周六周日131626222529307111522242734(Ⅰ)作出散点图,判断与哪一个适合作为每天净利润的回归方程类型?并求出回归方程(,,,精确到);(Ⅱ)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加6千人,7千人,8千人,9千人的概率依次为,,,.试决策超市是否有必要开展抽奖活动?参考数据:,,,.参考公式:,,.18.(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴正半轴重合,直线的参数方程为:(为参数,),曲线的极坐标方程为:.(1)写出曲线的直角坐标方程;(2)设直线与曲线相交于两点,直线过定点,若,求直线的斜率.19.(12分)在平面直角坐标系中,圆为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线l的极坐标方程为.分别求圆的极坐标方程和曲线的直角坐标方程;设直线交曲线于两点,曲线于两点,求的长;为曲线上任意一点,求的取值范围.20.(12分)已知函数.(1)当时,求关于的不等式的解集;(2)若关于的不等式有解,求的取值范围.21.(12分)在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列.22.(10分)已知函数,.(1)当时,方程在区间内有唯一实数解,求实数的取值范围;(2)对于区间上的任意不相等的实数、,都有成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先由复数的除法运算(分母实数化),求得,再求.【题目详解】因为,所以,所以,故选C.【题目点拨】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.2、A【解题分析】分析:利用双曲线的对称性以及圆的对称性,求出A的坐标,代入双曲线方程,然后求解双曲线的离心率即可.详解:、分别为双曲线的左、右焦点,以原点为圆心,半焦距为半径的圆交双曲线右支于、两点,且为等边三角形,则,代入双曲线方程可得:,即:,可得,即,可得,.故选:A.点睛:本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.3、C【解题分析】
由又,可得公差,从而可得结果.【题目详解】是等差数列又,∴公差,,故选C.【题目点拨】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.4、A【解题分析】
根据原函数的单调性,判断导数的正负,由此确定正确选项.【题目详解】根据的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有选项符合,故本题选A.【题目点拨】本小题主要考查导数与单调性的关系,考查数形结合的思想方法,属于基础题.5、D【解题分析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6、A【解题分析】分析:作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=|x|﹣y对应的直线进行平移,观察直线在y轴上的截距变化,即可得出z的取值范围.详解:作出实数x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(﹣1,﹣2),B(0,),O(0,0).设z=F(x,y)=|x|﹣y,将直线l:z=|x|﹣y进行平移,观察直线在y轴上的截距变化,当x≥0时,直线为图形中的红色线,可得当l经过B与O点时,取得最值z∈[0,],当x<0时,直线是图形中的蓝色直线,经过A或B时取得最值,z∈[﹣,3]综上所述,z∈[﹣,3].故答案为:A.点睛:(1)本题主要考查线性规划,意在考查学生对该知识的掌握水平和数形结合的思想方法,考查学生分类讨论思想方法.(2)解答本题的关键是对x分x≥0和x<0讨论,通过分类转化成常见的线性规划问题.7、A【解题分析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.8、B【解题分析】
根据题意,由可得:,代入化简即可求出答案.【题目详解】由伸缩变换,得代入,得,即.选B.【题目点拨】本题考查坐标的伸缩变换公式,考查学生的转化能力,属于基础题.9、B【解题分析】
直接利用条件概率公式求解即可.【题目详解】设第一次取白球为事件,第二次取白球为事件,连续取出两个小球都是白球为事件,则,,某次取出的小球是白球,则随后一次取出的小球为白球的概率为,故选B.【题目点拨】本题主要考查条件概率公式的应用,属于基础题.求解条件概率时,一要区分条件概率与独立事件同时发生的概率的区别与联系;二要熟记条件概率公式.10、A【解题分析】分析:先求导数,根据导数几何意义得切线斜率,再根据点斜式求切线方程.详解:因为,所以所以切线方程为选A.点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.11、A【解题分析】
根据杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,找出规律,即可求出数列的第10项,得到答案.【题目详解】由题意,可知,,故选A.【题目点拨】本题主要考查了归纳推理的应用,其中解答中读懂题意,理清前后项的关系,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、D【解题分析】
由正态分布的性质,结合图像依次分析选项即可得到答案。【题目详解】由题可得曲线的对称轴为,曲线的对称轴为,由图可得,由于表示标准差,越小图像越瘦长,故,故A,C不正确;根据图像可知,,,;所以,,故C不正确,D正确;故答案选D【题目点拨】本题考查正态分布曲线的特点以曲线所表示的意义,考查正态分布函数中两个特征数均值和方差对曲线的位置和形状的影响,正态分布曲线关于对称,且越大图像越靠右边,表示标准差,越小图像越瘦长,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
令,得,转化为直线与函数的图象有两个交点,于此可得出实数的值。【题目详解】令,得,构造函数,其中,问题转化为:当直线与函数的图象有两个交点,求实数的值。,令,得,列表如下:极小值作出图象如下图所示:结合图象可知,,因此,,故答案为:。【题目点拨】本题考查函数的零点个数问题,由函数零点个数求参数的取值范围,求解方法有如下两种:(1)分类讨论法:利用导数研究函数的单调性与极值,借助图象列出有关参数的不等式组求解即可;(2)参变量分离法:令原函数为零,得,将问题转化为直线与函数的图象,一般要利用导数研究函数的单调性与极值,利用图象求解。14、99.5【解题分析】分析:由已知列联表计算出后可得.详解:,∵,∴有99.5%的把握认为玩手机对学习有影响.点睛:本题考查独立性检验,解题关键是计算出,然后根据对照表比较即可.15、2【解题分析】
在正数数列an中,由点an,an-1在直线x-2y=0上,知a【题目详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【题目点拨】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.16、【解题分析】
利用二项式定理展开式,令可得出答案.【题目详解】的展开式的第项为,故答案为.【题目点拨】本题考查二项式指定项,解题时充分利用二项式定理展开式,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)超市有必要开展抽奖活动【解题分析】
(Ⅰ)在所给的坐标系中,画出散点图,可以发现选择作为每天净利润的回归方程类型比较合适,计算出,按照所给的公式可以求出,最后求出回归方程;(Ⅱ)根据离散型随机分布列的性质,可以求出值,然后可以求出数学期望,再利用(Ⅰ)求出的回归直线方程,可以预测出超市利润,除去总奖金,可以求出超市的净利润,最后判断出是否有必要开展抽奖活动.【题目详解】解:(Ⅰ)散点图如图所示根据散点图可判断,选择作为每天净利润的回归方程类型比较合适,关于的回归方程为(Ⅱ),活动开展后使用支付宝和微信支付的人数的期望为(千人)由(Ⅰ)得,当时,此时超市的净利润约为,故超市有必要开展抽奖活动【题目点拨】本题考查了求线性回归方程,并根据数学期望和回归直线方程对决策做出判断的问题,考查了应用数学知识解决现实生活中的问题的能力.18、(1);(2).【解题分析】
(1)由,得,由此能求出曲线C的直角坐标方程;(2)把代入,整理得,由,得,能求出直线l的斜率.【题目详解】(1)曲线C的极坐标方程为,所以.即,即.(2)把直线的参数方程带入得设此方程两根为,易知,而定点M在圆C外,所以,,,,可得,∴,所以直线的斜率为-1.【题目点拨】本题考查曲线的直角坐标方程的求法,考查直线的斜率的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19、(1),;(2);(3).【解题分析】
消去参数得到普通方程,利用这个是可得到的直角坐标,直接利用转换关系对极坐标方程进行转换可得到曲线的极坐标方程;利用方程组和两点间的距离公式分别求出,相减求出结果.利用向量的数量积和三角函数关系式的恒等变换及正弦型函数的性质可求出结果.【题目详解】圆为参数,转换为直角坐标方程为:,,利用转换为极坐标方程为:,即.曲线的极坐标方程为,转化为,利用整理得:.直线l的极坐标方程为.转换为直角坐标方程为:,由于直线交曲线于两点,则:,解得:或,所以:,同理:直线交曲线于两点,则:,解得:或.所以:,所以:.由于,则,P为曲线上任意一点,,则:,所以,的范围是.【题目点拨】本题考查的知识要点:参数方程化为直角坐标方程,直角坐标方程与极坐标方程之间的转换,平面向量的数量积公式的应用,两点间距离公式的应用,三角函数关系式的恒等变变换及辅助角公式与角函数的有界性,意在考查综合应用所学知识解答问题的能力,属于中档题.20、(1);(2)【解题分析】
(1)将代入不等式,得到,再通过讨论的范围,即可求出结果;(2)先根据不等式有解,可得只需大于等于的最小值,进而可求出结果.【题目详解】(1)当时,不等式为,若,则,即,若,则,舍去,若,则,即,综上,不等式的解集为;(2)当且仅当时等号成立,题意等价于,,的取值范围为.【题目点拨】本题主要考查含绝对值不等式的解法,以及不等式成立的问题,根据含绝对值不等式的性质以及分类讨论的思想,即可求解,属于常考题型.21、(1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抖音火花部门直播互动率KPI考核标准合同
- 网络交易担保补充协议
- 高端国际商标注册与全球业务拓展代理合同
- 电子产品性能质检补充合同
- 烘焙品牌加盟连锁与高品质原料配送协议
- 混凝土委托协议书
- 舞蹈房搬迁退款协议书
- 村干部拆迁协议书
- 抖音企业号KOL网红合作年度运营合同
- 私募基金投资总监聘用及全球资产配置合同
- 【跨国并购风险问题分析文献综述2700字】
- 偏瘫科普宣教
- 酒驾延缓处罚申请书
- 2023年国家开放大学《财务报表分析》形成性考核(1-4)试题答案解析
- 2022年1月福建化学会考试卷
- 2023年贵州省遵义市中考地理试卷真题(含答案)
- 物料提升机基础专项施工方案正文
- 工程机械管理制度
- 广东省劳动合同电子版(六篇)
- 对话大国工匠-致敬劳动模范期末考试答案
- 中央空调多联机安装规范
评论
0/150
提交评论