2024届山西省新绛县数学高二第二学期期末学业水平测试试题含解析_第1页
2024届山西省新绛县数学高二第二学期期末学业水平测试试题含解析_第2页
2024届山西省新绛县数学高二第二学期期末学业水平测试试题含解析_第3页
2024届山西省新绛县数学高二第二学期期末学业水平测试试题含解析_第4页
2024届山西省新绛县数学高二第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省新绛县数学高二第二学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象如图所示,若,且,则的值为()A. B. C.1 D.02.若函数且在上既是奇函数又是增函数,则的图象是()A. B.C. D.3.分配名工人去个不同的居民家里检查管道,要求名工人都分配出去,并且每名工人只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有()A.种 B.种 C.种 D.种4.分子为1且分母为正整数的分数称为单位分数,1可以分拆为若干个不同的单位分数之和:1=12+13+16,A.228 B.240 C.260 D.2735.集合,则等于()A. B. C. D.6.设集合,若,则()A.1 B. C. D.-17.已知的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为()A. B. C. D.8.在中,,若,则A. B. C. D.9.已知函数在区间上恰有一个最大值点和一个最小值点,则实数的取值范围是()A. B. C. D.10.在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.11.某射手每次射击击中目标的概率为,这名射手进行了10次射击,设为击中目标的次数,,,则=A. B. C. D.12.下列求导计算正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,满足不等式,则的取值范围是________.14.有5条线段,其长度分别为3,4,5,7,9,现从中任取3条,则能构成三角形的概率是_____.15.某人抛掷一枚均匀骰子,构造数列,使,记,则且的概率为_____.16.已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正三棱柱的高为3,底面边长为,点分别为棱和的中点.(1)求证:直线平面;(2)求二面角的余弦值.18.(12分)已知函数.(1)解不等式;(2)若不等式的解集包含,求实数的取值范围.19.(12分)已知数列满足,且.(Ⅰ)求,的值;(Ⅱ)是否存在实数,,使得,对任意正整数恒成立?若存在,求出实数、的值并证明你的结论;若不存在,请说明理由.20.(12分)在中,内角所对的边分别为且满足.(1)求角的大小;(2)若,的面积为,求的值..21.(12分)已知正四棱柱的底面边长为2,.(1)求该四棱柱的侧面积与体积;(2)若为线段的中点,求与平面所成角的大小.22.(10分)设函数f(x)=|x+a|+|x-a|.(1)当a=1时,解不等式f(x)≥4;(2)若f(x)≥6在x∈R上恒成立,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由题意得,,则,又,即,解得,所以,令,即,,解得该函数的对称轴为,则,即,所以,故选C.2、D【解题分析】

根据题意先得到,,判断其单调性,进而可求出结果.【题目详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【题目点拨】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.3、C【解题分析】

根据题意,分析可得,必有2名水暖工去同一居民家检查;分两步进行,①先从4名水暖工中抽取2人,②再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,由分步计数原理,计算可得答案.【题目详解】解:根据题意,分配4名水暖工去3个不同的居民家里,要求4名水暖工都分配出去,且每个居民家都要有人去检查;

则必有2名水暖工去同一居民家检查,

即要先从4名水暖工中抽取2人,有种方法,

再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,有种情况,

由分步计数原理,可得共种不同分配方案,

故选:C.【题目点拨】本题考查排列、组合的综合应用,注意一般顺序是先分组(组合),再排列,属于中档题.4、C【解题分析】

使用裂项法及m,n的范围求出m,n的值,从而求出答案.【题目详解】∵1=1∴1=1∴1∵m⩽n,m,n∈N∴m=13,n=20,所以mn=260.故选:C【题目点拨】本题主要考查归纳推理和裂项相消法,意在考查学生对该知识的理解掌握水平,属于基础题.5、B【解题分析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.6、A【解题分析】

由得且,把代入二次方程求得,最后对的值进行检验.【题目详解】因为,所以且,所以,解得.当时,,显然,所以成立,故选A.【题目点拨】本题考查集合的交运算,注意求出参数的值后要记得检验.7、A【解题分析】由题意可得:,由二项式系数的性质可得:奇数项的二项式系数和为.本题选择A选项.点睛:1.二项展开式的通项是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.8、A【解题分析】

根据平面向量的线性运算法则,用、表示出即可.【题目详解】即:本题正确选项:【题目点拨】本题考查平面向量的加法、减法和数乘运算,属于基础题.9、B【解题分析】

首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【题目详解】由题意,函数,令,所以,在区间上恰有一个最大值点和最小值点,则函数恰有一个最大值点和一个最小值点在区间,则,解答,即,故选B.【题目点拨】本题主要考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.10、A【解题分析】分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.详解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,∴A(1,0,0),D1(0,0,2),D(0,0,0),B1(1,1,2),=(﹣1,0,2),=(1,1,2),设异面直线AD1与DB1所成角为θ,则cosθ=∴异面直线AD1与DB1所成角的余弦值为.故答案为:A.点睛:(1)本题主要考查异面直线所成的角的向量求法,意在考查学生对该知识的掌握水平和分析转化能力.(2)异面直线所成的角的常见求法有两种,方法一:(几何法)找作(平移法、补形法)证(定义)指求(解三角形);方法二:(向量法),其中是异面直线所成的角,分别是直线的方向向量.11、A【解题分析】

利用次独立重复实验中恰好发生次的概率计算公式以及方差的计算公式,即可得到结果。【题目详解】由题可得随机变量服从二项分布;由,可得:,解得:故答案选A【题目点拨】本题主要考查二项分布概率和方差的计算公式,属于基础题。12、B【解题分析】

根据函数求导法则得到相应的结果.【题目详解】A选项应为,C选项应为,D选项应为.故选B.【题目点拨】这个题目考查了函数的求导运算,牢记公式,准确计算是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】解:由,满足不等式作出可行域如图,

令,目标函数经过A点时取的最小值,

联立,解得时得最小值,.

目标函数经过B点时取的最大值,

联立,解得,此时取得最大值,.

所以,z=2x+y的取值范围是.

故答案为:【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.14、【解题分析】

从5条线段中任取3条共有10种情况,将能构成三角形的情况数列出,即可得概率.【题目详解】从5条线段中任取3条,共有种情况,其中,能构成三角形的有:3,4,5;3,5,7;3,7,9;4,5,7;4,7,9;5,7,9.共6种情况;即能构成三角形的概率是,故答案为:【题目点拨】本题考查了古典概型的概率公式,注意统计出满足条件的情况数,再除以总情况数即可,属于基础题.15、.【解题分析】

根据题意,抛掷一枚均匀骰子,出现奇数或偶数概率为,则且的情况有2种:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,②当前2次出现奇数时,则后6次出现5次偶数1次奇数,分别计算相应的概率求和即可.【题目详解】抛掷一枚均匀骰子,出现奇数或偶数概率为,构造数列,使,记,则且的情况为:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,相应的概率,②当前2次出现奇数时,则后6次出现5次偶数1次奇数,相应的概率为,所以概率为.故答案为:.【题目点拨】本题考查二项分布概率计算,结合排列组合与数列的知识,属于综合题,解题的关键在于对所求情况进行分析,再利用二项分布进行概率计算即可,属于中等题.16、【解题分析】试题分析:椭圆的左焦点为,右焦点为,根据椭圆的定义,,∴,由三角形的性质,知,当是延长线与椭圆的交点时,等号成立,故所求最大值为.考点:椭圆的定义,三角形的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解题分析】

取BC中点F,连接FE,FD,可证平面AFDE,则,求解三角形证明,再由线面垂直的判定可得直线平面BCE;

以F为坐标原点,建立如图所示空间直角坐标系,分别求出平面BED与平面BCD的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.【题目详解】(1)取的中点,连结,如图,由题意知,四边形为矩形,且.因为为棱的中点,所以,因为,所以,因为,所以平面,所以.又,所以平面.(2)以F为坐标原点,建立如图所示空间直角坐标系,则0,,0,,,

,,

设平面BED的一个法向量为,

由,取,得.

取平面BCD的一个法向量为,

且二面角为锐角,

二面角的余弦值为.【题目点拨】本题考查线面垂直的判定,利用空间向量求解二面角的余弦值,考查空间想象能力与思维能力,属于中档题.18、(1)或(2)【解题分析】

运用分类讨论去绝对值,然后求出不等式结果由题意得,结合解集得出不等式组求出结果【题目详解】(1)即①当时,原不等式化为,即,解得,∴;②当时,原不等式化为,即,解得,∴.③当时,原不等式化为,即,解得,∴∴不等式的解集为或.(2)不等式可化为问题转化为在上恒成立,又,得∴,∴.【题目点拨】本题考查了含有绝对值问题的不等式,首先需要进行分类讨论去掉绝对值,然后求出不等式结果,在第问中需要进行转化,继而只有一个绝对值问题求解。19、(Ⅰ),;(Ⅱ)存在实数,符合题意.【解题分析】

(Ⅰ)由题意可整理为,从而代入,即可求,的值;(Ⅱ)当时和时,可得到一组、的值,于是假设该式成立,用数学归纳法证明即可.【题目详解】(Ⅰ)因为,整理得,由,代入得,.(Ⅱ)假设存在实数、,使得对任意正整数恒成立.当时,,①当时,,②由①②解得:,.下面用数学归纳法证明:存在实数,,使对任意正整数恒成立.(1)当时,结论显然成立.(2)当时,假设存在,,使得成立,那么,当时,.即当时,存在,,使得成立.由(1)(2)得:存在实数,,使对任意正整数恒成立.【题目点拨】本题主要考查数学归纳法在数列中的应用,意在考查学生的计算能力,分析能力,逻辑推理能力,比较综合,难度较大.20、(1);(2).【解题分析】分析:(1)根据正弦定理边化角,化简整理即可求得角B的值.(2)由三角形面积公式,得,再根据余弦定理,即可求得的值.详解:解:(1)解法一:由及正弦定理得:,,,.即(1)解法二:因为所以由可得……1分由正弦定理得即,,即(2)解法一:,,由余弦定理得:,即,,.(2)解法二:,,由余弦定理得:,即,由,得或.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化第三步:求结果21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论